HeteroFL 项目使用教程

本文介绍了iamralpht.github.io,一个开发者使用的静态网站生成器Jekyll驱动的个人博客模板,具有响应式设计、GitHubPages集成、自定义主题和社交功能,适用于个人简历、技术分享和作品集展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HeteroFL 项目使用教程

HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients 项目地址: https://gitcode.com/gh_mirrors/he/HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients

1. 项目的目录结构及介绍

HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients/
├── asset/
├── doc/
├── src/
│   ├── config/
│   ├── models/
│   ├── utils/
│   └── ...
├── .gitignore
├── LICENSE.md
├── README.md
├── requirements.txt
└── ...

目录结构介绍

  • asset/: 存放项目相关的资源文件,如图片、数据集等。
  • doc/: 存放项目的文档文件,如用户手册、API文档等。
  • src/: 项目的源代码目录,包含以下子目录:
    • config/: 存放项目的配置文件。
    • models/: 存放项目的模型定义文件。
    • utils/: 存放项目的工具函数和辅助代码。
  • .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
  • LICENSE.md: 项目的开源许可证文件。
  • README.md: 项目的介绍文件,通常包含项目的基本信息、安装和使用说明。
  • requirements.txt: 项目的依赖文件,列出了项目运行所需的 Python 包。

2. 项目的启动文件介绍

项目的启动文件通常位于 src/ 目录下,具体文件名可能因项目而异。以下是一些常见的启动文件及其功能:

  • train_classifier_fed.py: 用于训练分类器模型的脚本,支持不同的数据集和模型配置。
  • test_transformer_fed.py: 用于测试 Transformer 模型的脚本,支持不同的数据集和模型配置。

启动文件示例

python src/train_classifier_fed.py --data_name MNIST --model_name conv --control_name 1_100_0.1_iid_fix_a2-b8_bn_1_1

参数说明

  • --data_name: 指定数据集名称,如 MNISTCIFAR10 等。
  • --model_name: 指定模型名称,如 convresnet18 等。
  • --control_name: 控制参数名称,包含训练配置信息。

3. 项目的配置文件介绍

项目的配置文件通常位于 src/config/ 目录下,常见的配置文件包括:

  • config.yml: 全局配置文件,包含项目的超参数设置。
  • process_control.py: 处理控制逻辑的脚本,包含模型训练和测试的具体配置。

配置文件示例

# config.yml
global:
  batch_size: 32
  learning_rate: 0.001
  epochs: 100
  ...

配置文件说明

  • batch_size: 批处理大小,控制每次训练的样本数量。
  • learning_rate: 学习率,控制模型参数更新的步长。
  • epochs: 训练轮数,控制模型训练的总迭代次数。

通过以上配置文件,用户可以灵活调整项目的训练和测试参数,以适应不同的需求和环境。

HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients 项目地址: https://gitcode.com/gh_mirrors/he/HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平依佩Ula

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值