HeteroFL 项目使用教程
1. 项目的目录结构及介绍
HeteroFL-Computation-and-Communication-Efficient-Federated-Learning-for-Heterogeneous-Clients/
├── asset/
├── doc/
├── src/
│ ├── config/
│ ├── models/
│ ├── utils/
│ └── ...
├── .gitignore
├── LICENSE.md
├── README.md
├── requirements.txt
└── ...
目录结构介绍
- asset/: 存放项目相关的资源文件,如图片、数据集等。
- doc/: 存放项目的文档文件,如用户手册、API文档等。
- src/: 项目的源代码目录,包含以下子目录:
- config/: 存放项目的配置文件。
- models/: 存放项目的模型定义文件。
- utils/: 存放项目的工具函数和辅助代码。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
- LICENSE.md: 项目的开源许可证文件。
- README.md: 项目的介绍文件,通常包含项目的基本信息、安装和使用说明。
- requirements.txt: 项目的依赖文件,列出了项目运行所需的 Python 包。
2. 项目的启动文件介绍
项目的启动文件通常位于 src/
目录下,具体文件名可能因项目而异。以下是一些常见的启动文件及其功能:
- train_classifier_fed.py: 用于训练分类器模型的脚本,支持不同的数据集和模型配置。
- test_transformer_fed.py: 用于测试 Transformer 模型的脚本,支持不同的数据集和模型配置。
启动文件示例
python src/train_classifier_fed.py --data_name MNIST --model_name conv --control_name 1_100_0.1_iid_fix_a2-b8_bn_1_1
参数说明
--data_name
: 指定数据集名称,如MNIST
、CIFAR10
等。--model_name
: 指定模型名称,如conv
、resnet18
等。--control_name
: 控制参数名称,包含训练配置信息。
3. 项目的配置文件介绍
项目的配置文件通常位于 src/config/
目录下,常见的配置文件包括:
- config.yml: 全局配置文件,包含项目的超参数设置。
- process_control.py: 处理控制逻辑的脚本,包含模型训练和测试的具体配置。
配置文件示例
# config.yml
global:
batch_size: 32
learning_rate: 0.001
epochs: 100
...
配置文件说明
- batch_size: 批处理大小,控制每次训练的样本数量。
- learning_rate: 学习率,控制模型参数更新的步长。
- epochs: 训练轮数,控制模型训练的总迭代次数。
通过以上配置文件,用户可以灵活调整项目的训练和测试参数,以适应不同的需求和环境。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考