深度楼层平面图(DeepFloorplan)使用指南

深度楼层平面图(DeepFloorplan)使用指南

DeepFloorplan项目地址:https://gitcode.com/gh_mirrors/de/DeepFloorplan

一、项目目录结构及介绍

DeepFloorplan
├── data               # 数据存放目录
│   ├── floorplans     # 楼层平面图像数据
│   └── labels         # 对应的标签或注释数据
├── docs                # 文档资料
├── models              # 模型代码,包括预训练模型和自定义模型架构
├── scripts             # 脚本文件,用于数据处理、训练、评估等任务
├── utils               # 工具函数集合,如数据加载、预处理等
├── requirements.txt    # 项目依赖库列表
├── train.py            # 训练脚本
├── evaluate.py        # 评估脚本
└── README.md          # 项目说明文档

此项目结构清晰地划分了不同功能区域:data 目录存储项目所需的数据集;models 中包含了模型实现;scripts 用于执行具体任务的脚本;utils 提供辅助工具函数;而requirements.txt 列出了运行项目所需的Python包。

二、项目启动文件介绍

train.py

项目的核心训练脚本,负责加载数据集、构建模型、进行训练并保存模型权重。启动命令示例:

python train.py --config config.yaml

该脚本接受配置文件作为参数,通过配置文件来指定模型类型、训练集路径、批次大小等关键训练参数。

evaluate.py

主要用于模型的验证和性能评估,它同样接受配置文件作为输入以获取必要的设置。

python evaluate.py --weights path/to/model.h5 --config config.yaml

通过提供模型权重文件路径,可以对特定模型在测试集上的表现进行评估。

三、项目的配置文件介绍

配置文件通常命名为config.yaml,是控制项目行为的关键文件,涵盖了从数据预处理到模型训练的所有重要参数。其大致结构如下:

dataset:
  data_path: 'data/floorplans'           # 数据集路径
  label_path: 'data/labels'             # 标签文件路径

model:
  architecture: 'ResNet50'              # 使用的模型架构
  weights: 'imagenet'                   # 预训练权重选择
  
training:
  batch_size: 8                        # 批次大小
  epochs: 100                          # 训练轮数
  learning_rate: 0.001                  # 学习率

配置文件允许用户定制化训练过程,调整以适应不同的实验需求或者硬件环境,确保灵活性和可重用性。


以上是对DeepFloorplan项目的基本介绍,涵盖了核心的目录结构、主要的启动脚本以及配置文件的理解。在深入使用前,请确保已仔细阅读项目提供的README.md文件,了解最新细节和任何潜在更新。

DeepFloorplan项目地址:https://gitcode.com/gh_mirrors/de/DeepFloorplan

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平依佩Ula

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值