深度楼层平面图(DeepFloorplan)使用指南
DeepFloorplan项目地址:https://gitcode.com/gh_mirrors/de/DeepFloorplan
一、项目目录结构及介绍
DeepFloorplan
├── data # 数据存放目录
│ ├── floorplans # 楼层平面图像数据
│ └── labels # 对应的标签或注释数据
├── docs # 文档资料
├── models # 模型代码,包括预训练模型和自定义模型架构
├── scripts # 脚本文件,用于数据处理、训练、评估等任务
├── utils # 工具函数集合,如数据加载、预处理等
├── requirements.txt # 项目依赖库列表
├── train.py # 训练脚本
├── evaluate.py # 评估脚本
└── README.md # 项目说明文档
此项目结构清晰地划分了不同功能区域:data 目录存储项目所需的数据集;models 中包含了模型实现;scripts 用于执行具体任务的脚本;utils 提供辅助工具函数;而requirements.txt 列出了运行项目所需的Python包。
二、项目启动文件介绍
train.py
项目的核心训练脚本,负责加载数据集、构建模型、进行训练并保存模型权重。启动命令示例:
python train.py --config config.yaml
该脚本接受配置文件作为参数,通过配置文件来指定模型类型、训练集路径、批次大小等关键训练参数。
evaluate.py
主要用于模型的验证和性能评估,它同样接受配置文件作为输入以获取必要的设置。
python evaluate.py --weights path/to/model.h5 --config config.yaml
通过提供模型权重文件路径,可以对特定模型在测试集上的表现进行评估。
三、项目的配置文件介绍
配置文件通常命名为config.yaml
,是控制项目行为的关键文件,涵盖了从数据预处理到模型训练的所有重要参数。其大致结构如下:
dataset:
data_path: 'data/floorplans' # 数据集路径
label_path: 'data/labels' # 标签文件路径
model:
architecture: 'ResNet50' # 使用的模型架构
weights: 'imagenet' # 预训练权重选择
training:
batch_size: 8 # 批次大小
epochs: 100 # 训练轮数
learning_rate: 0.001 # 学习率
配置文件允许用户定制化训练过程,调整以适应不同的实验需求或者硬件环境,确保灵活性和可重用性。
以上是对DeepFloorplan项目的基本介绍,涵盖了核心的目录结构、主要的启动脚本以及配置文件的理解。在深入使用前,请确保已仔细阅读项目提供的README.md
文件,了解最新细节和任何潜在更新。
DeepFloorplan项目地址:https://gitcode.com/gh_mirrors/de/DeepFloorplan