AtlasNet 项目常见问题解决方案
项目基础介绍
AtlasNet 是一个开源项目,它包含了一种名为“AtlasNet”的神经网络模型,该模型能够从低分辨率的点云或图像中合成网格(点云+连接性)。这个项目是Thibault Groueix等人在2018年CVPR会议上发表的文章“AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation”的代码实现。项目主要使用 Python 3.6 和 PyTorch 框架开发。
新手常见问题及解决步骤
问题一:如何安装和设置 AtlasNet?
解决步骤:
-
克隆仓库:
git clone --recurse-submodules https://github.com/ThibaultGROUEIX/AtlasNet.git cd AtlasNet
-
创建一个名为
atlasnet
的虚拟环境,并安装所需依赖:conda create -n atlasnet python=3.6 --yes conda activate atlasnet conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch --yes pip install --user --requirement requirements.txt
-
如果需要,编译 Chamfer 距离和 Metro 距离:
python auxiliary/ChamferDistancePytorch/chamfer3D/setup.py install git clone https://github.com/ThibaultGROUEIX/metro_sources.git cd metro_sources python setup.py --build
问题二:如何下载项目所需的数据集?
解决步骤:
-
项目会自动尝试下载数据集,但如果遇到 Google Drive 流量限制问题,可以手动下载数据集。
-
手动下载数据集的链接如下:
-
将下载的数据集解压到正确位置:
cd AtlasNet mkdir data unzip ShapeNetV1PointCloud.zip -d /data/ unzip ShapeNetV1Renderings.zip -d /data/ unzip metro_files.zip -d /data/
问题三:如何在本地运行示例代码?
解决步骤:
-
在项目根目录下找到
train.py
文件。 -
使用 Python 运行该文件:
python train.py
-
根据需要修改
train.py
中的配置参数,例如数据集路径、模型参数等,以适应不同的训练需求。
以上是 AtlasNet 项目的新手常见问题及解决步骤,希望对您有所帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考