AtlasNet 项目常见问题解决方案

AtlasNet 项目常见问题解决方案

AtlasNet This repository contains the source codes for the paper "AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation ". The network is able to synthesize a mesh (point cloud + connectivity) from a low-resolution point cloud, or from an image. AtlasNet 项目地址: https://gitcode.com/gh_mirrors/at/AtlasNet

项目基础介绍

AtlasNet 是一个开源项目,它包含了一种名为“AtlasNet”的神经网络模型,该模型能够从低分辨率的点云或图像中合成网格(点云+连接性)。这个项目是Thibault Groueix等人在2018年CVPR会议上发表的文章“AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation”的代码实现。项目主要使用 Python 3.6 和 PyTorch 框架开发。

新手常见问题及解决步骤

问题一:如何安装和设置 AtlasNet?

解决步骤:

  1. 克隆仓库:

    git clone --recurse-submodules https://github.com/ThibaultGROUEIX/AtlasNet.git
    cd AtlasNet
    
  2. 创建一个名为 atlasnet 的虚拟环境,并安装所需依赖:

    conda create -n atlasnet python=3.6 --yes
    conda activate atlasnet
    conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch --yes
    pip install --user --requirement requirements.txt
    
  3. 如果需要,编译 Chamfer 距离和 Metro 距离:

    python auxiliary/ChamferDistancePytorch/chamfer3D/setup.py install
    git clone https://github.com/ThibaultGROUEIX/metro_sources.git
    cd metro_sources
    python setup.py --build
    

问题二:如何下载项目所需的数据集?

解决步骤:

  1. 项目会自动尝试下载数据集,但如果遇到 Google Drive 流量限制问题,可以手动下载数据集。

  2. 手动下载数据集的链接如下:

  3. 将下载的数据集解压到正确位置:

    cd AtlasNet
    mkdir data
    unzip ShapeNetV1PointCloud.zip -d /data/
    unzip ShapeNetV1Renderings.zip -d /data/
    unzip metro_files.zip -d /data/
    

问题三:如何在本地运行示例代码?

解决步骤:

  1. 在项目根目录下找到 train.py 文件。

  2. 使用 Python 运行该文件:

    python train.py
    
  3. 根据需要修改 train.py 中的配置参数,例如数据集路径、模型参数等,以适应不同的训练需求。

以上是 AtlasNet 项目的新手常见问题及解决步骤,希望对您有所帮助。

AtlasNet This repository contains the source codes for the paper "AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation ". The network is able to synthesize a mesh (point cloud + connectivity) from a low-resolution point cloud, or from an image. AtlasNet 项目地址: https://gitcode.com/gh_mirrors/at/AtlasNet

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

齐游菊Rosemary

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值