深度评估(DeepEval):LLM评测框架中文使用指南
项目地址:https://gitcode.com/gh_mirrors/de/deepeval
项目介绍
深度评估(DeepEval) 是一个专为大型语言模型(LLM)输出评测设计的开源框架。它借鉴了Pytest的设计理念,但更加专注于单元测试LLM生成的答案,确保其质量符合预期标准。通过集成最新的研究,如G-Eval等评价方法,DeepEval提供了一系列指标来量化LLM响应的准确性、相关性和其他关键特性。此外,该框架具有高度模块化,便于使用者选择性地运用其内置指标,或是开发自定义评估逻辑,适用于多样化的应用场景。
项目快速启动
环境准备与登录
首先,确保你的系统上已安装Python和Poetry。接着,从GitHub克隆DeepEval项目:
git clone https://github.com/confident-ai/deepeval.git
cd deepeval
为了记录测试结果,建议创建账号并获取API密钥(可选)。通过命令行登录并输入API:
deepeval login
跟随提示进行操作。
运行第一个测试案例
在开始之前,你需要设置一个简单的测试场景。打开或创建文件test_chatbot.py
,并加入以下代码来实现一个基本的测试用例:
import pytest
from deepeval import assert_test
from deepeval.metrics import AnswerRelevancyMetric
from deepeval.test_case import LLMTestCase
def test_example():
answer_relevancy_metric = AnswerRelevancyMetric(threshold=0.7)
test_case = LLMTestCase(
input="鞋子如果不合脚怎么办?",
actual_output="我们提供30天全额退款,无需额外费用。",
retrieval_context=["所有客户均可享受30天无理由全额退款。"]
)
result = assert_test(test_case, [answer_relevancy_metric])
print(result.metrics[0].score)
运行此测试:
pytest test_chatbot.py
完成测试后,CLI将显示结果链接,你可以通过浏览器查看详细评测报告。
应用案例和最佳实践
在实际应用中,DeepEval可以用于持续监控LLM服务的质量,比如每日自动化运行一组涵盖广泛查询类型的测试用例,确保回应的质量始终如一。最佳实践包括:
- 细化测试场景:为不同类型的问答准备具体的测试案例,覆盖常见、边缘以及异常情况。
- 定制化指标:根据应用需求,调整或开发新的评价指标以适应特定的逻辑判断。
- 整合知识库:利用
retrieval_context
功能,使评测更贴近实际应用场景,增强结果的相关性。
典型生态项目整合
DeepEval支持与多个生态项目无缝对接,例如LangChain和LlamaIndex,这对于构建基于知识图谱的对话系统尤其有用。通过整合这些工具,开发者能够提升模型的表现力和上下文理解能力。
虽然具体整合步骤未详尽列出,通常涉及导入对应的模块和配置,遵循以下模式:
from langchain import YourComponent # 假设组件
from deepeval import evaluate
# 在获取到LLM输出后结合DeepEval进行评价
output = YourComponent(query="...")
evaluate(your_metrics_list, LLMTestCase(input=query, actual_output=output))
结合生态系统中的其他工具,DeepEval能帮助开发团队高效评估和优化他们的大型语言模型应用,确保提供的答案既准确又相关。
本指南提供了接入和使用DeepEval的基本路径,深入细节和高级用法还需参考官方文档和社区资源。通过这一框架,开发者可以更有效地验证和提升其自然语言处理应用程序的质量。
deepeval The Evaluation Framework for LLMs 项目地址: https://gitcode.com/gh_mirrors/de/deepeval