OCR-Corrector:专为OCR设计的智能纠错器
OCR-Corrector 利用语言模型,纠正OCR识别错误 项目地址: https://gitcode.com/gh_mirrors/oc/OCR-Corrector
项目介绍
在数字化时代,光学字符识别(OCR)技术已经成为文档处理和数据提取的重要工具。然而,OCR识别结果中的错误往往会影响后续的数据处理和分析。为了解决这一问题,我们推出了OCR-Corrector,一个专为OCR设计的智能纠错器。OCR-Corrector能够自动检测并修正OCR识别结果中的错误,显著提高文本的准确性。
项目技术分析
OCR-Corrector的核心技术基于深度学习和自然语言处理(NLP)。项目采用了预训练的BERT模型进行语义分析,结合字形相似度评估,能够有效地识别和修正OCR结果中的错误。具体来说,OCR-Corrector通过以下步骤实现纠错:
- 输入处理:接收OCR识别结果及其单字符置信度。
- 错误检测:利用置信度阈值和字形相似度评估,检测可能的错误字符。
- 语义分析:通过BERT模型进行语义分析,确定最可能的正确字符。
- 输出修正:输出修正后的文本。
项目及技术应用场景
OCR-Corrector适用于多种OCR应用场景,特别是那些对文本准确性要求较高的领域。以下是几个典型的应用场景:
文档识别
适用于书籍内页、合同扫描等有大段文字的图片。通过OCR-Corrector,可以显著提高文档识别的准确性,减少人工校对的成本。
单据识别
适用于各种表单、证件、发票等具有固定格式的图片。OCR-Corrector能够根据预设的关键词表进行纠错,确保识别结果的准确性。
其他应用
未来,OCR-Corrector还将扩展到日期、证件号码、标点符号等非汉字字符的纠错,进一步拓宽其应用范围。
项目特点
- 高准确性:基于BERT模型的语义分析,能够准确识别和修正OCR结果中的错误。
- 灵活配置:支持多种业务场景的配置,用户可以根据具体需求进行定制。
- 易于集成:可以嵌入到现有的OCR系统中,也可以作为独立的后处理工具使用。
- 开源免费:项目完全开源,用户可以自由使用、修改和分发。
如何使用
-
克隆项目:
git clone https://github.com/tiantian91091317/OCR-Corrector.git pip install -r requirements.txt
-
下载模型和数据:
- 下载预训练的BERT模型到
corrector/model/pre-trained
目录下。 - 下载字形相似度评估文件
char_meta.txt
到corrector/config
目录下。
- 下载预训练的BERT模型到
-
安装:
python setup.py install pip install -r requirements.txt
-
使用示例:
- 嵌入到OCR识别代码中:
import ocr_corrector corrector = ocr_corrector.initial() ocr_results, recog_probs = my_ocr(img) ocr_res_corrected = corrector.correct(ocr_results, recog_probs, biz_type)
- 调用识别API后进行后处理:
python demo.py --img=corrector/data/your_img.jpg --biz=[doc|report|your_type] --api=ali
- 嵌入到OCR识别代码中:
未来计划
OCR-Corrector将继续扩展其功能,包括但不限于:
- 非汉字字符纠错:支持日期、证件号码、标点符号等非汉字字符的纠错。
- NLP工具包:形成OCR所需的NLP工具包,包括粘连文本分词、命名实体识别、键值对匹配等。
参考项目
- Faspell: https://github.com/iqiyi/FASPell
- pycorrector: https://github.com/shibing624/pycorrector
OCR-Corrector是一个功能强大且易于使用的OCR纠错工具,无论你是开发者还是数据分析师,都能从中受益。快来尝试吧!
OCR-Corrector 利用语言模型,纠正OCR识别错误 项目地址: https://gitcode.com/gh_mirrors/oc/OCR-Corrector