Songoku 项目使用教程
1. 项目目录结构及介绍
songoku/
├── .gitignore
├── 258epochs_model_7.h5
├── 258epochs_model_7.json
├── LICENSE
├── README.md
├── TODO.txt
├── camera.py
├── helpers.py
├── image_parsing.py
├── neural_network.py
├── sudoku_guessing.py
├── sudoku_solving.py
└── v0_1.png
- .gitignore: 用于指定Git版本控制系统忽略的文件和目录。
- 258epochs_model_7.h5: 神经网络模型的权重文件。
- 258epochs_model_7.json: 神经网络模型的结构文件。
- LICENSE: 项目的开源许可证文件,本项目使用MIT许可证。
- README.md: 项目的介绍文件,包含项目的基本信息和使用说明。
- TODO.txt: 项目待办事项列表。
- camera.py: 用于从视频中捕获图像的脚本。
- helpers.py: 包含项目中使用的辅助函数。
- image_parsing.py: 用于解析和处理图像的脚本。
- neural_network.py: 神经网络模型的实现脚本。
- sudoku_guessing.py: 用于猜测数独谜题的脚本。
- sudoku_solving.py: 用于解决数独谜题的脚本。
- v0_1.png: 项目相关的图像文件。
2. 项目启动文件介绍
项目的启动文件是 camera.py
。该文件负责从视频中捕获图像,并调用其他模块进行图像处理和数独谜题的解决。
启动步骤
- 确保所有依赖项已安装。
- 运行
camera.py
文件:python camera.py
- 程序将启动摄像头,捕获视频帧,并实时解析和解决数独谜题。
3. 项目配置文件介绍
项目中没有显式的配置文件,但可以通过修改 camera.py
和其他脚本中的参数来调整项目的行为。例如,可以修改神经网络模型的路径、摄像头分辨率等。
示例配置
在 camera.py
中,可以找到如下代码片段:
# 设置摄像头分辨率
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
通过修改 640
和 480
的值,可以调整摄像头的分辨率。
其他配置
在 neural_network.py
中,可以找到神经网络模型的加载路径:
model = load_model('258epochs_model_7.h5')
如果需要使用不同的模型文件,可以修改此路径。
通过以上步骤,您可以顺利启动并配置 Songoku 项目,实现从视频中实时解析和解决数独谜题的功能。