Kaito 项目安装与配置指南
kaito Kubernetes AI Toolchain Operator 项目地址: https://gitcode.com/gh_mirrors/ka/kaito
1. 项目基础介绍
Kaito 是一个开源项目,旨在自动化在 Kubernetes 集群中部署和运行 AI/ML 模型的推断或微调工作负载。该项目主要用于管理和运行大型开源模型,例如 falcon 和 phi-3 等。Kaito 通过容器镜像来管理大型模型文件,并提供预设配置来简化模型部署过程。
主要编程语言:Go
2. 项目使用的关键技术和框架
- Kubernetes Custom Resource Definition (CRD):Kaito 使用 Kubernetes 的 CRD 来定义和操作自定义资源。
- Container Images:使用容器镜像来管理和部署模型,确保环境一致性。
- Helm Charts:用于简化部署流程的 Kubernetes 包管理工具。
- Azure Resource Manager:与 Azure 云服务交互,自动配置所需资源。
3. 项目安装和配置准备工作
在开始安装 Kaito 之前,请确保您已经完成了以下准备工作:
- 安装了 Kubernetes 集群。
- 安装了 Azure CLI 工具。
- 确保您的 Kubernetes 集群拥有访问 Azure 资源的权限。
安装步骤
步骤 1:安装 Kaito Helm Chart
首先,您需要从 Helm 仓库中下载 Kaito 的 Helm Chart。
helm repo add kaito https://kaito-project.github.io/charts
helm install kaito kaito/kaito
步骤 2:配置 Azure 资源
接下来,您需要使用 Azure CLI 来配置必要的 Azure 资源。
az login
az account set --subscription <YourAzureSubscriptionId>
az group create --name <ResourceGroupName> --location <Location>
替换 <YourAzureSubscriptionId>
、<ResourceGroupName>
和 <Location>
为您的 Azure 订阅 ID、资源组名称和位置。
步骤 3:部署 Kaito 工作空间
创建一个 Kaito 工作空间以部署模型。
cat <<EOF | kubectl apply -f -
apiVersion: kaito.sh/v1alpha1
kind: Workspace
metadata:
name: example-workspace
spec:
resource:
instanceType: Standard_NC6
labelSelector:
matchLabels:
apps: kaito-example
inference:
preset:
name: phi-3.5-mini-instruct
EOF
请根据您的需求调整 instanceType
和 labelSelector
。
步骤 4:验证安装
安装完成后,您可以检查 Kaito 工作空间的状态来验证安装是否成功。
kubectl get workspace example-workspace
当 WORKSPACEREADY
列显示为 True
时,表示安装成功。
以上步骤为您提供了 Kaito 的基础安装和配置指南。请根据实际的部署需求和项目文档进行相应的调整和优化。
kaito Kubernetes AI Toolchain Operator 项目地址: https://gitcode.com/gh_mirrors/ka/kaito