MR4C: 在Hadoop中运行原生代码的框架

MR4C: 在Hadoop中运行原生代码的框架

mr4c 项目地址: https://gitcode.com/gh_mirrors/mr/mr4c

项目介绍

MR4C(MapReduce for C/C++)是由Google Inc.创建的一个实现框架,它使您能够在Hadoop执行框架内部署并运行原生代码。该框架结合了本地开发算法的性能与灵活性,以及Hadoop固有的大规模扩展能力和吞吐量,从而支持高级数据处理应用程序的大规模部署。MR4C适合那些对计算密集型任务和定制化算法有高要求的场景。

项目快速启动

环境准备

确保您的系统已安装以下依赖项:

  • 操作系统:Ubuntu 12.04 或 CentOS 6.5
  • 开发工具:ant(最低1.8.2)、Java(最低1.6)、ivy(2.1)、make(3.8.1)、g++(4.6.3)
  • 库文件:log4cxx(0.10.0)、jansson(2.2.1)、cppunit(1.12.1)、proj4(4.8.0)、gdal(1.10)

构建步骤

  1. 克隆仓库:

    git clone https://github.com/google/mr4c.git
    
  2. 构建项目:

    cd mr4c
    ./build_all
    
  3. 测试安装: 转到测试目录并运行测试脚本验证安装成功:

    cd test
    ./test_mr4c.sh
    

应用案例与最佳实践

MR4C特别适用于大数据处理场景,例如地理空间数据分析,利用其高性能的C/C++算法优势处理GDAL支持的各种栅格数据。最佳实践中,开发者应当从简单的示例算法开始,如在tutorial目录下提供的样例,随后根据需求调整和优化代码。确保充分理解MR4C的核心概念,这将有助于设计更高效的分布式处理流程。

典型生态项目

尽管直接的“典型生态项目”信息未在给定的源码仓库内明确指出,MR4C的设计目的是为了与Hadoop生态系统无缝集成,因此它可以被看作是任何依赖于大数据处理的项目的基础组件。常见的结合场景可能包括但不限于地理信息系统(GIS)中的大规模图像处理、气象数据分析、以及在大规模集群上进行的复杂数据转换和过滤任务。

由于MR4C侧重于提供一个基础设施层来促进原生代码的Hadoop集成,它的“生态项目”更多体现在采用该框架的特定应用领域解决方案之中,而非独立列出的项目列表。开发者通常会在需要高性能计算能力且无法通过纯Java实现满足时,探索使用MR4C。


请注意,上述文档基于提供给定链接的信息构建,并假定了一些通用的最佳实践和场景。实际的应用案例可能会依据具体行业和项目需求而有所不同。

mr4c 项目地址: https://gitcode.com/gh_mirrors/mr/mr4c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵鹰伟Meadow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值