MR4C: 在Hadoop中运行原生代码的框架
mr4c 项目地址: https://gitcode.com/gh_mirrors/mr/mr4c
项目介绍
MR4C(MapReduce for C/C++)是由Google Inc.创建的一个实现框架,它使您能够在Hadoop执行框架内部署并运行原生代码。该框架结合了本地开发算法的性能与灵活性,以及Hadoop固有的大规模扩展能力和吞吐量,从而支持高级数据处理应用程序的大规模部署。MR4C适合那些对计算密集型任务和定制化算法有高要求的场景。
项目快速启动
环境准备
确保您的系统已安装以下依赖项:
- 操作系统:Ubuntu 12.04 或 CentOS 6.5
- 开发工具:ant(最低1.8.2)、Java(最低1.6)、ivy(2.1)、make(3.8.1)、g++(4.6.3)
- 库文件:log4cxx(0.10.0)、jansson(2.2.1)、cppunit(1.12.1)、proj4(4.8.0)、gdal(1.10)
构建步骤
-
克隆仓库:
git clone https://github.com/google/mr4c.git
-
构建项目:
cd mr4c ./build_all
-
测试安装: 转到测试目录并运行测试脚本验证安装成功:
cd test ./test_mr4c.sh
应用案例与最佳实践
MR4C特别适用于大数据处理场景,例如地理空间数据分析,利用其高性能的C/C++算法优势处理GDAL支持的各种栅格数据。最佳实践中,开发者应当从简单的示例算法开始,如在tutorial
目录下提供的样例,随后根据需求调整和优化代码。确保充分理解MR4C的核心概念,这将有助于设计更高效的分布式处理流程。
典型生态项目
尽管直接的“典型生态项目”信息未在给定的源码仓库内明确指出,MR4C的设计目的是为了与Hadoop生态系统无缝集成,因此它可以被看作是任何依赖于大数据处理的项目的基础组件。常见的结合场景可能包括但不限于地理信息系统(GIS)中的大规模图像处理、气象数据分析、以及在大规模集群上进行的复杂数据转换和过滤任务。
由于MR4C侧重于提供一个基础设施层来促进原生代码的Hadoop集成,它的“生态项目”更多体现在采用该框架的特定应用领域解决方案之中,而非独立列出的项目列表。开发者通常会在需要高性能计算能力且无法通过纯Java实现满足时,探索使用MR4C。
请注意,上述文档基于提供给定链接的信息构建,并假定了一些通用的最佳实践和场景。实际的应用案例可能会依据具体行业和项目需求而有所不同。