自动化CAN负载逆向工程
项目简介
自动化CAN负载逆向工程是一个由Dr. Brent Stone在空军学院攻读计算机科学博士学位时开发的Python和R脚本集合。该项目旨在帮助研究人员和开发者自动解析从乘用车中收集的Controller Area Network(CAN)数据包。这项工作对汽车网络安全审计和入侵检测提供了强大的工具,特别感谢Dave Blundell和Open Garages社区的技术支持。
技术分析
项目中包含了两个主要的工作流:
- Pipeline:这个简单的实现仅需将loggerProgram0.log文件放入该目录并运行main.py。它展示了处理CAN数据的基本流程,适合初学者理解代码逻辑。
- Pipeline_multi-file:这是一个更复杂且全面的实现,可以处理多个CAN数据样本。它修复了一些错误,但为了保持代码清晰,这些修复没有回传到Pipeline中的类。
此外,还有一个R脚本文件夹,利用了rEDM包来执行时间序列分析,非常适合高级用户。
应用场景
- 汽车安全研究:通过解析CAN数据,可以发现车辆系统的行为模式,有助于设计和测试入侵检测系统。
- 车载电子设备调试:快速解析数据包以理解和调试复杂的车载网络。
- 数据分析:对于数据科学家来说,R脚本提供了一种自动化分析大量CAN数据的方法。
项目特点
- 易扩展性:两个Python工作流有不同的复杂度,方便不同背景的开发者上手。
- 自动化:批量处理多个CAN日志文件,提升效率。
- 可视化:提供散点图和层次聚类树状图,直观展示数据关系。
- 开放源码:所有代码均为开源,鼓励贡献和协作。
- 文档详细:附带完整的博士论文,深入解释方法和技术细节。
想要了解更多关于CAN数据解析或汽车网络安全的信息,请参阅项目的相关资料,并在Open Garages Google群组提问。现在就加入,一起探索这个令人兴奋的领域吧!
[START YOUR CAN REVERSE ENGINEERING ADVENTURE NOW!](https://github.com/AutomatedCANPayloadReverseEngineering)