FastVideo 使用教程
1. 项目介绍
FastVideo 是一个轻量级框架,旨在加速大型视频扩散模型。它提供了一系列工具和模型,以实现视频生成和处理的高效率。FastVideo 支持一致性蒸馏的视频扩散模型,如 FastHunyuan 和 FastMochi,这些模型能够在推理过程中实现显著的加速。
2. 项目快速启动
以下是快速启动 FastVideo 的步骤:
环境准备
确保您的环境中安装了 Python 3.10.0、CUDA 12.4 和 H100。
安装 FastVideo
运行以下命令来安装 FastVideo:
./env_setup.sh fastvideo
安装 Sliding Tile Attention(可选)
如果需要使用 Sliding Tile Attention,请按照 csrc/sliding_tile_attention/README.md
中的说明进行安装。
推理示例
以下是使用 StepVideo 进行推理的示例:
首先,下载模型:
python scripts/huggingface/download_hf.py --repo_id=stepfun-ai/stepvideo-t2v --local_dir=data/stepvideo-t2v --repo_type=model
然后,运行以下脚本来执行推理:
sh scripts/inference/inference_stepvideo_STA.sh
这将使用 Sliding Tile Attention 进行推理。
如果不使用 Sliding Tile Attention,可以使用以下命令:
sh scripts/inference/inference_stepvideo.sh
3. 应用案例和最佳实践
推理案例
FastVideo 提供了多种推理案例,包括:
- 使用 StepVideo 和 Sliding Tile Attention 进行视频推理。
- 对 HunyuanVideo 应用 Sliding Tile Attention 进行推理。
- 在单个 RTX 4090 GPU 上对 FastHunyuan 进行推理。
最佳实践
- 为了提高生成的视频质量,建议使用具有 80GB 内存的 GPU 来运行原始的 Hunyuan 管道。
- 使用预计算的文本嵌入和 VAE 嵌入来进行内存高效的微调。
4. 典型生态项目
FastVideo 的生态系统中包括了以下典型项目:
- FastHunyuan:基于 Hunyuan 的视频扩散模型,支持蒸馏和推理加速。
- FastMochi:基于 Mochi 的视频扩散模型,同样支持蒸馏和推理加速。
- Sliding Tile Attention:一种注意力机制,用于加速视频推理过程。
通过上述介绍和教程,您可以开始使用 FastVideo 来加速您的视频处理任务。