FastVideo 使用教程

FastVideo 使用教程

FastVideo FastVideo is a lightweight framework for accelerating large video diffusion models. FastVideo 项目地址: https://gitcode.com/gh_mirrors/fa/FastVideo

1. 项目介绍

FastVideo 是一个轻量级框架,旨在加速大型视频扩散模型。它提供了一系列工具和模型,以实现视频生成和处理的高效率。FastVideo 支持一致性蒸馏的视频扩散模型,如 FastHunyuan 和 FastMochi,这些模型能够在推理过程中实现显著的加速。

2. 项目快速启动

以下是快速启动 FastVideo 的步骤:

环境准备

确保您的环境中安装了 Python 3.10.0、CUDA 12.4 和 H100。

安装 FastVideo

运行以下命令来安装 FastVideo:

./env_setup.sh fastvideo

安装 Sliding Tile Attention(可选)

如果需要使用 Sliding Tile Attention,请按照 csrc/sliding_tile_attention/README.md 中的说明进行安装。

推理示例

以下是使用 StepVideo 进行推理的示例:

首先,下载模型:

python scripts/huggingface/download_hf.py --repo_id=stepfun-ai/stepvideo-t2v --local_dir=data/stepvideo-t2v --repo_type=model

然后,运行以下脚本来执行推理:

sh scripts/inference/inference_stepvideo_STA.sh

这将使用 Sliding Tile Attention 进行推理。

如果不使用 Sliding Tile Attention,可以使用以下命令:

sh scripts/inference/inference_stepvideo.sh

3. 应用案例和最佳实践

推理案例

FastVideo 提供了多种推理案例,包括:

  • 使用 StepVideo 和 Sliding Tile Attention 进行视频推理。
  • 对 HunyuanVideo 应用 Sliding Tile Attention 进行推理。
  • 在单个 RTX 4090 GPU 上对 FastHunyuan 进行推理。

最佳实践

  • 为了提高生成的视频质量,建议使用具有 80GB 内存的 GPU 来运行原始的 Hunyuan 管道。
  • 使用预计算的文本嵌入和 VAE 嵌入来进行内存高效的微调。

4. 典型生态项目

FastVideo 的生态系统中包括了以下典型项目:

  • FastHunyuan:基于 Hunyuan 的视频扩散模型,支持蒸馏和推理加速。
  • FastMochi:基于 Mochi 的视频扩散模型,同样支持蒸馏和推理加速。
  • Sliding Tile Attention:一种注意力机制,用于加速视频推理过程。

通过上述介绍和教程,您可以开始使用 FastVideo 来加速您的视频处理任务。

FastVideo FastVideo is a lightweight framework for accelerating large video diffusion models. FastVideo 项目地址: https://gitcode.com/gh_mirrors/fa/FastVideo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵鹰伟Meadow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值