Linux Kernel Library (LKL) 安装与配置指南

Linux Kernel Library (LKL) 安装与配置指南

linux Linux kernel source tree linux 项目地址: https://gitcode.com/gh_mirrors/linux144/linux

1. 项目基础介绍

Linux Kernel Library(LKL)是一个旨在尽可能多地重用Linux内核代码的项目,同时保持最低的维护开销。它允许用户空间应用程序(不仅限于在Linux操作系统上运行)读写Linux文件系统或使用Linux网络堆栈,也可以为其他操作系统创建内核驱动程序来读写Linux文件系统,支持引导加载程序读写Linux文件系统等。

LKL将内核代码编译为对象文件,可以直接由应用程序链接。LKL提供的API基于Linux系统调用接口。

主要编程语言:C

2. 项目使用的关键技术和框架

  • POSIXWindows 用户空间应用程序支持:LKL可以在多种宿主环境中运行。
  • FUSE(Filesystem in Userspace):允许用户空间程序创建自己的文件系统。
  • 架构无关性:通过抽象宿主操作,LKL可以在不同的宿主操作系统上运行。

3. 项目安装和配置的准备工作

在开始安装LKL之前,请确保您的系统已经安装了以下依赖项:

  • POSIX 系统(如Ubuntu)需要:

    • gcc
    • make
    • libfuse-dev
    • libarchive-dev
    • xfsprogs
    • libjsmn-dev
    • (可选)btrfs-tools
  • Windows 系统需要安装相应的交叉编译工具链。

详细安装步骤

在POSIX系统上安装LKL
  1. 安装必要的依赖项:

    sudo apt-get update
    sudo apt-get install libfuse-dev libarchive-dev xfsprogs libjsmn-dev
    
  2. (可选)如果需要运行测试,安装额外的工具:

    sudo apt-get install btrfs-tools
    pip install yamlish junit_xml
    
  3. 编译LKL:

    make -C tools/lkl
    
  4. 运行测试(如果安装了测试依赖项):

    cd tools/lkl
    make run-tests
    
在Windows系统上安装LKL
  1. 安装必要的交叉编译工具链,如MinGW或Cygwin。

  2. 编译LKL:

    • 对于MinGW:
      make CROSS_COMPILE=i686-w64-mingw32- -C tools/lkl
      
    • 对于Cygwin或MSYS2:
      make -C tools/lkl
      

按照上述步骤,您可以顺利完成LKL的安装和配置。接下来,您可以开始探索和开发基于LKL的项目了。

linux Linux kernel source tree linux 项目地址: https://gitcode.com/gh_mirrors/linux144/linux

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通作业场景中的常见载具 - Buoy(浮标):水域导航安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参者的目标检测 标注格式: YOLO格式标注,含目标边界框类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框目标实际尺寸高度吻合 场景适配性: 包含近岸开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵鹰伟Meadow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值