Google Research 开源项目使用教程
google-researchGoogle Research项目地址:https://gitcode.com/gh_mirrors/go/google-research
1. 项目的目录结构及介绍
Google Research 项目的目录结构如下:
google-research/
├── README.md
├── LICENSE
├── setup.py
├── requirements.txt
├── scripts/
├── models/
├── datasets/
├── experiments/
├── utils/
└── ...
- README.md: 项目的基本介绍和使用说明。
- LICENSE: 项目的开源许可证,本项目使用 Apache-2.0 许可证。
- setup.py: 项目的安装脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- scripts/: 包含一些辅助脚本。
- models/: 包含各种机器学习模型。
- datasets/: 包含数据集处理的相关代码。
- experiments/: 包含实验配置和运行脚本。
- utils/: 包含一些通用的工具函数。
2. 项目的启动文件介绍
项目的启动文件通常位于 scripts/
或 experiments/
目录下。以下是一个示例启动文件:
# scripts/run_experiment.py
import argparse
import os
from models import MyModel
from datasets import load_dataset
def main():
parser = argparse.ArgumentParser(description="Run a machine learning experiment.")
parser.add_argument("--model", type=str, required=True, help="Model to use.")
parser.add_argument("--dataset", type=str, required=True, help="Dataset to use.")
args = parser.parse_args()
model = MyModel(args.model)
dataset = load_dataset(args.dataset)
# 运行实验
model.train(dataset)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件通常位于 experiments/
目录下,以下是一个示例配置文件:
# experiments/config.yaml
model:
name: "MyModel"
parameters:
learning_rate: 0.001
batch_size: 32
dataset:
name: "MyDataset"
path: "datasets/my_dataset.csv"
training:
epochs: 10
save_path: "checkpoints/"
在启动文件中,可以通过读取配置文件来加载模型和数据集的参数:
import yaml
with open("experiments/config.yaml", "r") as f:
config = yaml.safe_load(f)
model_name = config["model"]["name"]
model_params = config["model"]["parameters"]
dataset_name = config["dataset"]["name"]
dataset_path = config["dataset"]["path"]
training_epochs = config["training"]["epochs"]
training_save_path = config["training"]["save_path"]
通过这种方式,可以灵活地配置和运行不同的实验。
google-researchGoogle Research项目地址:https://gitcode.com/gh_mirrors/go/google-research