MPLBM-UT 开源项目教程

MPLBM-UT 开源项目教程

MPLBM-UTLibrary for performing multiphase simulations (based on the Shan-Chen model) in complicated geometries (i.e. porous media 3D images)项目地址:https://gitcode.com/gh_mirrors/mp/MPLBM-UT

项目介绍

MPLBM-UT 是一个基于 Lattice Boltzmann Method (LBM) 的多相流模拟库,专门用于渗透介质分析。该项目支持计算毛细压力和相对渗透率曲线以及单相渗透率。MPLBM-UT 主要用于处理复杂的3D几何结构,如多孔介质和微CT图像。

项目快速启动

安装

首先,克隆项目仓库到本地:

git clone https://github.com/je-santos/MPLBM-UT.git
cd MPLBM-UT

运行示例

进入示例目录并运行一个示例脚本:

cd examples
python run_example.py

应用案例和最佳实践

应用案例

MPLBM-UT 可以用于模拟多种实际问题,如支撑剂输送或地层损害。以下是一个简单的应用案例:

  1. 支撑剂输送模拟:通过模拟支撑剂在多孔介质中的运动,可以优化油井的支撑剂注入策略。

最佳实践

  1. 参数优化:在运行模拟之前,应根据具体问题调整模拟参数,如网格分辨率、时间步长等。

  2. 结果分析:使用可视化工具(如Matplotlib)分析模拟结果,以更好地理解流体在多孔介质中的行为。

典型生态项目

MPLBM-UT 作为一个多相流模拟库,可以与其他项目结合使用,扩展其功能:

  1. ParaView:一个开源的数据分析和可视化应用程序,可以用于可视化 MPLBM-UT 的模拟结果。

  2. OpenFOAM:一个开源的计算流体动力学(CFD)工具包,可以与 MPLBM-UT 结合使用,进行更复杂的流体动力学模拟。

通过这些生态项目的结合使用,可以进一步提高 MPLBM-UT 的应用范围和模拟精度。

MPLBM-UTLibrary for performing multiphase simulations (based on the Shan-Chen model) in complicated geometries (i.e. porous media 3D images)项目地址:https://gitcode.com/gh_mirrors/mp/MPLBM-UT

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周琰策Scott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值