Deep Head Pose Lite 开源项目教程

Deep Head Pose Lite 开源项目教程

deep-head-pose-lite项目地址:https://gitcode.com/gh_mirrors/de/deep-head-pose-lite

1. 项目的目录结构及介绍

Deep Head Pose Lite 项目的目录结构如下:

deep-head-pose-lite/
├── data/
│   ├── example_data/
│   └── README.md
├── models/
│   ├── checkpoints/
│   └── README.md
├── src/
│   ├── config/
│   ├── utils/
│   └── main.py
├── tests/
│   └── test_main.py
├── .gitignore
├── LICENSE
├── README.md
└── requirements.txt

目录结构介绍

  • data/: 存放示例数据和数据相关的说明文件。

    • example_data/: 包含一些示例数据文件。
    • README.md: 数据目录的说明文件。
  • models/: 存放模型文件和模型相关的说明文件。

    • checkpoints/: 存放训练好的模型检查点文件。
    • README.md: 模型目录的说明文件。
  • src/: 存放源代码文件。

    • config/: 配置文件目录。
    • utils/: 工具函数目录。
    • main.py: 项目的主启动文件。
  • tests/: 存放测试文件。

    • test_main.py: 主测试文件。
  • .gitignore: Git 忽略文件配置。

  • LICENSE: 项目许可证文件。

  • README.md: 项目的主说明文件。

  • requirements.txt: 项目依赖的 Python 包列表。

2. 项目的启动文件介绍

项目的启动文件是 src/main.py。这个文件包含了项目的主要逻辑和启动代码。以下是 main.py 的主要内容介绍:

import argparse
from config import Config
from utils import load_data, train_model, evaluate_model

def main():
    parser = argparse.ArgumentParser(description="Deep Head Pose Lite")
    parser.add_argument('--mode', type=str, default='train', help='train or evaluate')
    parser.add_argument('--config', type=str, default='config/default.yaml', help='path to config file')
    args = parser.parse_args()

    config = Config(args.config)

    if args.mode == 'train':
        data = load_data(config.data_path)
        model = train_model(data, config)
    elif args.mode == 'evaluate':
        data = load_data(config.data_path)
        evaluate_model(data, config)

if __name__ == '__main__':
    main()

启动文件介绍

  • main(): 主函数,负责解析命令行参数,加载配置文件,并根据模式(训练或评估)调用相应的函数。
  • argparse: 用于解析命令行参数。
  • Config: 配置类,用于加载和解析配置文件。
  • load_data(): 加载数据的函数。
  • train_model(): 训练模型的函数。
  • evaluate_model(): 评估模型的函数。

3. 项目的配置文件介绍

项目的配置文件存放在 src/config/ 目录下。默认的配置文件是 default.yaml。以下是 default.yaml 的主要内容介绍:

data_path: 'data/example_data'
model_path: 'models/checkpoints/model.pth'
batch_size: 32
learning_rate: 0.001
num_epochs: 10

配置文件介绍

  • data_path: 数据路径,指定数据文件的存放位置。
  • model_path: 模型路径,指定模型检查点文件的存放位置。
  • batch_size: 批处理大小,指定每次训练的数据量。
  • learning_rate: 学习率,指定优化器的学习率。
  • num_epochs: 训练轮数,指定训练的总轮数。

通过修改这些配置项,可以调整项目的运行参数,以适应不同的训练和评估需求。

deep-head-pose-lite项目地址:https://gitcode.com/gh_mirrors/de/deep-head-pose-lite

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周琰策Scott

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值