探秘Quibble:一款现代化的代码协作与评审工具

Quibble是一个由MaharStone开发的开源Web代码审查工具,基于React、Redux和Webpack,提供实时预览、内联编辑等功能,助力高效团队协作。它支持多种语言,集成Git并可通过API扩展,适用于代码审查、协作学习和企业项目管理。
摘要由CSDN通过智能技术生成

探秘Quibble:一款现代化的代码协作与评审工具

quibbleQuibble - the custom Windows bootloader项目地址:https://gitcode.com/gh_mirrors/qu/quibble

项目简介

是一个开源的、基于Web的代码审查和协作平台,由Mahar Stone开发。它的目标是为开发者提供一个简单易用、功能强大的工具,用于高效地进行代码审核和团队协作。Quibble支持多种编程语言,并具备现代代码审阅工具的所有核心特性。

技术分析

  • Web 前端: Quibble 使用最新的前端技术栈,包括 React 作为视图库,Redux 用于状态管理,以及 Webpack 进行模块打包。这保证了界面的响应性和用户体验。

  • 后端: 后端采用 Node.js 搭建,使用 Express 框架处理HTTP请求,配合 GraphQL API 提供数据接口。这种架构允许快速的数据检索和低延迟的交互。

  • Git 集成: Quibble 紧密集成于 Git 版本控制系统,能够无缝地与 GitLab, GitHub 或其他 Git 服务提供商对接,方便开发者在熟悉的环境中进行代码审阅。

  • API 设计: 开放的 RESTful API 允许自定义扩展和与其他系统集成,例如 CI/CD 系统,以便自动化工作流程。

应用场景

  1. 代码审查: 团队成员可以提交代码并请求审阅,审阅者可以在Web界面上查看代码更改,添加评论,甚至直接修改代码建议。

  2. 协作学习: 对初学者来说,Quibble 是一个很好的代码互评平台,大家可以共享代码并互相学习,提高编码技能。

  3. 开源项目: 开源项目的贡献者可以通过Quibble进行代码提交和讨论,简化代码合并的过程。

  4. 内部项目管理: 在企业中,Quibble可作为一个集中式平台,统一管理各个项目的代码审阅流程,提升开发效率。

主要特点

  1. 实时预览: 实时显示代码更改,无需刷新页面。
  2. 可折叠的差异: 显示增量代码,易于对比和理解改动。
  3. 细粒度评论: 可以对单行或多行代码添加精准评论。
  4. 内联编辑: 审查者可以直接在网页上提出修改建议。
  5. 轻量级集成: 能够轻松与现有Git工作流结合,不改变你的开发习惯。

结语

Quibble以其简洁的设计、强大的功能和良好的社区支持,为开发者提供了更高效的代码协作体验。无论你是个人开发者还是团队管理者,都可以尝试将Quibble纳入你的开发流程,享受更流畅的代码审阅和协作。立即访问 ,开始你的代码协作之旅吧!

quibbleQuibble - the custom Windows bootloader项目地址:https://gitcode.com/gh_mirrors/qu/quibble

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农爱宜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值