BoomFilters 开源项目使用教程

BoomFilters 开源项目使用教程

BoomFilters Probabilistic data structures for processing continuous, unbounded streams. 项目地址: https://gitcode.com/gh_mirrors/bo/BoomFilters

1. 项目目录结构及介绍

BoomFilters 是一个用于处理连续无界数据流的概率数据结构库。以下是项目的目录结构及其介绍:

BoomFilters/
├── LICENSE
├── README.md
├── boom.go
├── boom_test.go
├── buckets.go
├── buckets_test.go
├── classic.go
├── classic_test.go
├── counting.go
├── counting_test.go
├── countmin.go
├── countmin_test.go
├── cuckoo.go
├── cuckoo_test.go
├── deletable.go
├── deletable_test.go
├── hyperloglog.go
├── hyperloglog_test.go
├── inverse.go
├── inverse_test.go
├── minhash.go
├── minhash_test.go
├── partitioned.go
├── partitioned_test.go
├── scalable.go
├── scalable_test.go
├── stable.go
├── stable_test.go
├── topk.go
└── topk_test.go

目录结构介绍

  • LICENSE: 项目的开源许可证文件。
  • README.md: 项目的介绍文档,包含项目的基本信息和使用说明。
  • boom.go: 项目的主文件,定义了主要的接口和结构。
  • boom_test.go: 项目的主要测试文件。
  • buckets.go, classic.go, counting.go, countmin.go, cuckoo.go, deletable.go, hyperloglog.go, inverse.go, minhash.go, partitioned.go, scalable.go, stable.go, topk.go: 这些文件分别实现了不同的概率数据结构。
  • *_test.go: 这些文件是相应的测试文件,用于测试对应的实现。

2. 项目启动文件介绍

BoomFilters 项目没有传统的“启动文件”,因为它是一个库,而不是一个可执行的应用程序。开发者需要在自己的项目中导入 BoomFilters 库,并根据需要使用其中的数据结构。

例如,如果你想使用 Stable Bloom Filter,你可以这样导入和使用:

package main

import (
    "fmt"
    "github.com/tylertreat/BoomFilters"
)

func main() {
    sbf := boom.NewDefaultStableBloomFilter(10000, 0.01)
    fmt.Println("stable point", sbf.StablePoint())

    sbf.Add([]byte(`a`))
    if sbf.Test([]byte(`a`)) {
        fmt.Println("contains a")
    }

    if !sbf.TestAndAdd([]byte(`b`)) {
        fmt.Println("doesn't contain b")
    }

    if sbf.Test([]byte(`b`)) {
        fmt.Println("now it contains b")
    }

    // 恢复到初始状态
    sbf.Reset()
}

3. 项目配置文件介绍

BoomFilters 项目没有专门的配置文件。所有的配置都是通过代码中的参数传递来完成的。例如,在创建 Stable Bloom Filter 时,你可以指定过滤器的大小和误报率:

sbf := boom.NewDefaultStableBloomFilter(10000, 0.01)

在这个例子中,10000 是过滤器的大小,0.01 是误报率。

总结

BoomFilters 是一个功能强大的概率数据结构库,适用于处理连续无界数据流。通过本教程,你应该能够理解项目的目录结构、如何使用这些数据结构以及如何进行基本的配置。

BoomFilters Probabilistic data structures for processing continuous, unbounded streams. 项目地址: https://gitcode.com/gh_mirrors/bo/BoomFilters

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农爱宜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值