Stable Diffusion Web UI for AMDGPUs 使用教程
1. 项目介绍
Stable Diffusion Web UI for AMDGPUs 是一个基于 Gradio 库实现的 Stable Diffusion 网络接口项目。该项目专为 AMDGPU 优化,提供了丰富的功能和易于使用的界面,使用户能够轻松生成高质量的图像。
主要功能
- txt2img 和 img2img 模式:支持文本到图像和图像到图像的转换。
- 一键安装和运行:提供简单的安装和运行脚本。
- 多种图像处理功能:包括外绘、内绘、颜色草图、提示矩阵等。
- 高级设置:支持调整采样方法、噪声设置、中断处理等。
- 4GB 显卡支持:适用于低显存显卡。
- API 支持:提供 API 接口,方便集成到其他应用中。
2. 项目快速启动
安装步骤
- 安装 Python 3.10.6:确保安装时勾选“Add Python to PATH”。
- 安装 Git:下载并安装 Git。
- 克隆项目仓库:
git clone https://github.com/lshqqytiger/stable-diffusion-webui-amdgpu.git
- 运行安装脚本:
cd stable-diffusion-webui-amdgpu ./webui-user.bat
启动项目
- 运行启动脚本:
./webui.bat
- 访问 Web UI:在浏览器中打开
http://127.0.0.1:7860
。
3. 应用案例和最佳实践
案例1:生成艺术图像
- 场景:艺术家使用 Stable Diffusion 生成创意图像。
- 步骤:
- 在 Web UI 中选择“txt2img”模式。
- 输入描述性文本,如“一个穿着燕尾服的男人”。
- 调整参数,如分辨率、采样方法等。
- 点击“生成”按钮,等待图像生成。
案例2:图像修复
- 场景:修复老照片中的损坏部分。
- 步骤:
- 在 Web UI 中选择“img2img”模式。
- 上传需要修复的图像。
- 使用“内绘”功能,选择损坏区域。
- 调整参数,点击“生成”按钮。
4. 典型生态项目
1. GFPGAN
- 功能:用于修复人脸的神经网络。
- 集成方式:通过 Web UI 的“Extras”选项卡使用。
2. RealESRGAN
- 功能:图像超分辨率神经网络。
- 集成方式:通过 Web UI 的“Extras”选项卡使用。
3. Clip Skip
- 功能:跳过某些图像处理步骤,提高效率。
- 集成方式:通过 Web UI 的设置选项启用。
通过以上步骤,您可以快速上手 Stable Diffusion Web UI for AMDGPUs,并利用其强大的功能进行图像生成和处理。