ioBroker.vis 项目教程

ioBroker.vis 项目教程

ioBroker.visVisualisation for ioBroker platform.项目地址:https://gitcode.com/gh_mirrors/io/ioBroker.vis

1. 项目介绍

ioBroker.vis 是 ioBroker 平台的一个可视化工具,允许用户通过图形界面创建和控制智能家居系统。它提供了丰富的可视化组件,支持自定义布局和设计,使得用户可以轻松地构建个性化的控制面板。ioBroker.vis 基于 Web 技术,支持多种设备和平台,包括桌面浏览器、移动设备等。

2. 项目快速启动

安装 ioBroker

首先,确保你已经安装了 ioBroker。如果还没有安装,可以参考以下步骤:

# 安装 ioBroker
curl -sL https://iobroker.net/install.sh | bash -

安装 ioBroker.vis

安装完 ioBroker 后,可以通过 ioBroker 的命令行工具安装 ioBroker.vis:

# 进入 ioBroker 目录
cd /opt/iobroker

# 安装 ioBroker.vis
iobroker add vis

启动 ioBroker.vis

安装完成后,启动 ioBroker.vis:

# 启动 ioBroker.vis
iobroker start vis

访问 ioBroker.vis

启动后,可以通过浏览器访问 ioBroker.vis 的界面:

http://<你的服务器IP>:8082/vis/index.html

3. 应用案例和最佳实践

智能家居控制面板

ioBroker.vis 可以用于创建智能家居的控制面板,用户可以通过图形界面控制灯光、温度、安防系统等。例如,可以创建一个房间的控制面板,显示当前温度、湿度,并提供开关灯、调节空调温度的按钮。

能源管理系统

通过 ioBroker.vis,用户可以创建能源管理系统的可视化界面,实时监控家庭用电情况,并根据数据调整用电策略,实现节能减排。

安防监控

ioBroker.vis 还可以用于安防监控系统,用户可以通过界面实时查看摄像头画面,接收报警信息,并进行相应的操作。

4. 典型生态项目

ioBroker.vis-2

ioBroker.vis-2 是 ioBroker.vis 的下一代可视化工具,提供了更强大的功能和更好的性能。它支持更多的可视化组件和更灵活的布局设计,适合需要高度定制化的项目。

ioBroker.web

ioBroker.web 是 ioBroker 的 Web 服务器适配器,允许用户通过 Web 浏览器访问 ioBroker 的界面。它与 ioBroker.vis 配合使用,可以实现跨平台的智能家居控制。

ioBroker.socket-io

ioBroker.socket-io 是 ioBroker 的实时通信适配器,支持 WebSocket 协议。它与 ioBroker.vis 结合使用,可以实现实时数据更新和交互。

通过以上模块的介绍和实践,用户可以快速上手 ioBroker.vis,并将其应用于各种智能家居和物联网项目中。

ioBroker.visVisualisation for ioBroker platform.项目地址:https://gitcode.com/gh_mirrors/io/ioBroker.vis

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农爱宜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值