股票价格预测:基于GAN的开源项目介绍
项目基础介绍
本项目是一个开源的股票价格预测项目,旨在通过先进的机器学习算法对股票市场进行预测分析。该项目由CSDN公司开发的InsCode AI大模型提供支持,主要使用Python和Jupyter Notebook进行开发。项目通过对比两种算法——长短期记忆网络(LSTM)和生成对抗网络(GAN)——来预测股票价格。
编程语言
- Python
- Jupyter Notebook
核心功能
-
LSTM网络预测:项目首先使用LSTM网络进行股票市场预测。LSTM是一种强大的学习方法,能够学习序列预测问题中的顺序依赖性,非常适合用于时间序列数据的预测。
-
GAN模型预测:项目进一步利用GAN模型进行预测。在此模型中,LSTM作为生成器,卷积神经网络(CNN)作为判别器,两者相互对抗,以生成更加准确的股票价格预测。
-
新闻影响分析:项目还引入自然语言处理(NLP)技术,分析新闻对股票价格的影响,从而提高预测的准确性。
项目最近更新的功能
- 代码优化:项目代码进行了优化,提高了模型的训练效率和预测速度。
- 模型调整:对LSTM和GAN模型进行了参数调整和结构优化,以获得更好的预测效果。
- 数据预处理:改进了数据预处理流程,增强了数据的质量和可用性。
- 文档更新:项目文档得到了更新,包括更详细的代码说明和模型使用指南,便于用户更好地理解和应用项目。
通过这些更新,项目不仅提升了预测的准确性,还提高了用户体验和项目的可维护性。