标题:DEFT:检测嵌入式追踪,开启高效精准的多目标追踪新时代!

标题:DEFT:检测嵌入式追踪,开启高效精准的多目标追踪新时代!

DEFT Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking." Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network. An LSTM is also added to capture motion constraints. 项目地址: https://gitcode.com/gh_mirrors/de/DEFT


1、项目介绍

DEFT(Detection Embeddings for Tracking)是一个创新的多目标追踪系统,由Mohamed Chaabane等人在arXiv 2102.02267中提出。这个开源项目结合了先进的对象检测技术和深度学习的嵌入式匹配网络,旨在提供更准确、更快速的追踪解决方案。

2、项目技术分析

DEFT遵循“追踪即检测”的原则,但通过引入一个与基础检测器联合学习的外观匹配网络,以及一个捕捉运动约束的LSTM,它突破了传统方法的局限。这种方法既保留了简单关联的优点,又增强了对遮挡和挑战场景的鲁棒性。DEFT的核心是其高效的检测嵌入式,这使得即使在复杂的3D追踪数据上也能表现出色。

3、项目及技术应用场景

DEFT适用于各种需要实时或高精度多目标追踪的场景,包括但不限于自动驾驶、视频监控、行人追踪等。在nuScenes、MOT和Kitti等基准测试集上的结果显示,DEFT在车辆追踪和3D追踪等任务中表现卓越。

4、项目特点

  • 效率与准确性并存:DEFT在保持与顶级追踪方法相当的准确度的同时,提供了更快的速度。
  • 强大的鲁棒性:在处理更具挑战性的追踪数据时,DEFT展现了显著的优势。
  • 联合学习模式:DEFT通过联合学习对象检测和匹配网络,实现了外观特征的有效利用。
  • 直观的结果可视化:提供的GIF图像展示了DEFT在不同场景下的追踪效果,直观呈现其性能。

安装与使用

DEFT的安装过程简单,只需克隆项目仓库,创建一个新的conda环境,并按照Readme指示安装依赖项和预训练模型。此外,还提供了针对nuScenes、MOT17和Kitti数据集的数据准备脚本和训练评估实验脚本,方便用户进行训练和验证。

总的来说,DEFT为多目标追踪领域带来了新的可能,无论你是研究者还是开发者,DEFT都是一个值得尝试的优秀工具。现在就加入我们,一起探索DEFT在追踪领域的无限潜力!

DEFT Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking." Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network. An LSTM is also added to capture motion constraints. 项目地址: https://gitcode.com/gh_mirrors/de/DEFT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪澄莹George

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值