CoaT 项目使用教程
1. 项目目录结构及介绍
CoaT 项目的目录结构如下:
CoaT/
├── figures/
├── scripts/
├── src/
├── tasks/
├── .gitignore
├── LICENSE
├── README.md
目录介绍:
- figures/:存放项目相关的图表和图像文件。
- scripts/:包含项目的脚本文件,用于训练、评估和启动项目。
- src/:项目的核心代码文件,包括模型定义、数据处理等。
- tasks/:存放与任务相关的配置和脚本文件。
- .gitignore:Git 忽略文件,指定哪些文件或目录不需要被版本控制。
- LICENSE:项目的开源许可证文件,本项目使用 Apache-2.0 许可证。
- README.md:项目的介绍文件,包含项目的概述、使用方法和相关链接。
2. 项目的启动文件介绍
CoaT 项目的启动文件主要位于 scripts/
目录下,以下是一些关键的启动脚本:
- train.sh:用于训练模型的脚本。
- eval.sh:用于评估模型的脚本。
- eval_extra_args.sh:用于评估模型时带有额外参数的脚本。
- train_extra_args.sh:用于训练模型时带有额外参数的脚本。
使用示例:
# 训练 CoaT-Lite Tiny 模型
bash scripts/train.sh coat_lite_tiny coat_lite_tiny
# 评估预训练的 CoaT-Lite Tiny 模型
bash scripts/eval.sh coat_lite_tiny coat_lite_tiny_pretrained /output/pretrained/coat_lite_tiny_e88e96b0.pth
3. 项目的配置文件介绍
CoaT 项目的配置文件主要通过命令行参数进行配置,以下是一些常见的配置参数:
训练配置:
- --batch-size:设置训练时的批量大小。
- --drop-path:设置模型中的 drop-path 概率。
- --no-model-ema:禁用模型指数移动平均(EMA)。
- --warmup-epochs:设置学习率预热阶段的 epoch 数量。
- --clip-grad:设置梯度裁剪的最大值。
评估配置:
- --batch-size:设置评估时的批量大小。
- --input-size:设置输入图像的尺寸。
示例:
# 训练 CoaT Small 模型时的配置
bash scripts/train_extra_args.sh coat_small coat_small --batch-size 128 --drop-path 0.2 --no-model-ema --warmup-epochs 20 --clip-grad 5.0
# 评估 CoaT-Lite Medium 模型时的配置
bash scripts/eval_extra_args.sh coat_lite_medium coat_lite_medium_384x384_pretrained /output/pretrained/coat_lite_medium_384x384_f9129688.pth --batch-size 128 --input-size 384
通过以上配置,您可以根据需要调整模型的训练和评估参数,以获得最佳的性能。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考