CoaT 项目使用教程

CoaT 项目使用教程

CoaT (ICCV 2021 Oral) CoaT: Co-Scale Conv-Attentional Image Transformers 项目地址: https://gitcode.com/gh_mirrors/co/CoaT

1. 项目目录结构及介绍

CoaT 项目的目录结构如下:

CoaT/
├── figures/
├── scripts/
├── src/
├── tasks/
├── .gitignore
├── LICENSE
├── README.md

目录介绍:

  • figures/:存放项目相关的图表和图像文件。
  • scripts/:包含项目的脚本文件,用于训练、评估和启动项目。
  • src/:项目的核心代码文件,包括模型定义、数据处理等。
  • tasks/:存放与任务相关的配置和脚本文件。
  • .gitignore:Git 忽略文件,指定哪些文件或目录不需要被版本控制。
  • LICENSE:项目的开源许可证文件,本项目使用 Apache-2.0 许可证。
  • README.md:项目的介绍文件,包含项目的概述、使用方法和相关链接。

2. 项目的启动文件介绍

CoaT 项目的启动文件主要位于 scripts/ 目录下,以下是一些关键的启动脚本:

  • train.sh:用于训练模型的脚本。
  • eval.sh:用于评估模型的脚本。
  • eval_extra_args.sh:用于评估模型时带有额外参数的脚本。
  • train_extra_args.sh:用于训练模型时带有额外参数的脚本。

使用示例:

# 训练 CoaT-Lite Tiny 模型
bash scripts/train.sh coat_lite_tiny coat_lite_tiny

# 评估预训练的 CoaT-Lite Tiny 模型
bash scripts/eval.sh coat_lite_tiny coat_lite_tiny_pretrained /output/pretrained/coat_lite_tiny_e88e96b0.pth

3. 项目的配置文件介绍

CoaT 项目的配置文件主要通过命令行参数进行配置,以下是一些常见的配置参数:

训练配置:

  • --batch-size:设置训练时的批量大小。
  • --drop-path:设置模型中的 drop-path 概率。
  • --no-model-ema:禁用模型指数移动平均(EMA)。
  • --warmup-epochs:设置学习率预热阶段的 epoch 数量。
  • --clip-grad:设置梯度裁剪的最大值。

评估配置:

  • --batch-size:设置评估时的批量大小。
  • --input-size:设置输入图像的尺寸。

示例:

# 训练 CoaT Small 模型时的配置
bash scripts/train_extra_args.sh coat_small coat_small --batch-size 128 --drop-path 0.2 --no-model-ema --warmup-epochs 20 --clip-grad 5.0

# 评估 CoaT-Lite Medium 模型时的配置
bash scripts/eval_extra_args.sh coat_lite_medium coat_lite_medium_384x384_pretrained /output/pretrained/coat_lite_medium_384x384_f9129688.pth --batch-size 128 --input-size 384

通过以上配置,您可以根据需要调整模型的训练和评估参数,以获得最佳的性能。

CoaT (ICCV 2021 Oral) CoaT: Co-Scale Conv-Attentional Image Transformers 项目地址: https://gitcode.com/gh_mirrors/co/CoaT

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪澄莹George

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值