开源项目 VTs-Drloc 使用教程

开源项目 VTs-Drloc 使用教程

VTs-DrlocNeurIPS 2021, Official codes for "Efficient Training of Visual Transformers with Small Datasets".项目地址:https://gitcode.com/gh_mirrors/vt/VTs-Drloc

1. 项目的目录结构及介绍

VTs-Drloc/
├── configs/
│   ├── default.yaml
│   └── ...
├── datasets/
│   ├── __init__.py
│   └── ...
├── models/
│   ├── __init__.py
│   └── ...
├── utils/
│   ├── __init__.py
│   └── ...
├── main.py
├── README.md
└── ...
  • configs/: 包含项目的配置文件,如 default.yaml
  • datasets/: 包含数据集处理的相关脚本。
  • models/: 包含模型的定义和实现。
  • utils/: 包含各种辅助工具和函数。
  • main.py: 项目的启动文件。
  • README.md: 项目说明文档。

2. 项目的启动文件介绍

main.py 是项目的启动文件,负责初始化配置、加载数据、构建模型、训练和评估等任务。以下是 main.py 的主要功能模块:

import argparse
import yaml
from datasets import load_dataset
from models import build_model
from utils import train, evaluate

def main():
    parser = argparse.ArgumentParser(description='VTs-Drloc')
    parser.add_argument('--config', type=str, default='configs/default.yaml', help='Path to the config file')
    args = parser.parse_args()

    with open(args.config, 'r') as f:
        config = yaml.safe_load(f)

    dataset = load_dataset(config['dataset'])
    model = build_model(config['model'])

    if config['mode'] == 'train':
        train(model, dataset, config)
    elif config['mode'] == 'eval':
        evaluate(model, dataset, config)

if __name__ == '__main__':
    main()

3. 项目的配置文件介绍

configs/default.yaml 是项目的默认配置文件,包含了训练和评估所需的各种参数。以下是配置文件的一个示例:

dataset:
  name: 'small_dataset'
  path: 'datasets/small_dataset'

model:
  name: 'vit'
  params:
    num_classes: 10

train:
  batch_size: 32
  epochs: 100
  learning_rate: 0.001

eval:
  batch_size: 32
  • dataset: 定义数据集的名称和路径。
  • model: 定义模型的名称和参数。
  • train: 定义训练的参数,如批大小、迭代次数和学习率。
  • eval: 定义评估的参数,如批大小。

以上是开源项目 VTs-Drloc 的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助。

VTs-DrlocNeurIPS 2021, Official codes for "Efficient Training of Visual Transformers with Small Datasets".项目地址:https://gitcode.com/gh_mirrors/vt/VTs-Drloc

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裴辰垚Simone

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值