Early-Bird-Tickets 项目使用教程

Early-Bird-Tickets 项目使用教程

Early-Bird-Tickets [ICLR 2020] Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks 项目地址: https://gitcode.com/gh_mirrors/ea/Early-Bird-Tickets

1. 项目目录结构及介绍

Early-Bird-Tickets/
├── assets/
├── models/
├── optim/
├── scripts/
│   ├── standard-train/
│   │   ├── search.sh
│   │   ├── prune.sh
│   │   ├── mask_distance.sh
│   │   ├── retrain_continue.sh
│   │   ├── retrain_scratch.sh
│   ├── EVAL_ResNet18_ImageNet.py
│   ├── EVAL_ResNet50_ImageNet.py
├── LICENSE
├── README.md
├── compute_flops.py
├── filter.py
├── main.py
├── main_c.py
├── main_c_lp.py
├── main_lp.py
├── main_resnet50.py
├── main_scratch.py
├── main_scratch_lp.py
├── mask_cr.py
├── plot_overlap.py
├── resprune.py
├── resprune_50.py
├── resprune_lp.py
├── vggprune.py
├── vggprune_lp.py
└── vggprune_lp_protective.py

目录结构介绍

  • assets/: 存放项目相关的资源文件。
  • models/: 存放模型的定义和实现文件。
  • optim/: 存放优化器相关的实现文件。
  • scripts/: 存放项目的脚本文件,包括训练、剪枝、重训练等操作的脚本。
    • standard-train/: 包含标准训练相关的脚本,如搜索、剪枝、重训练等。
  • EVAL_ResNet18_ImageNet.py: 用于评估ResNet18在ImageNet数据集上的性能。
  • EVAL_ResNet50_ImageNet.py: 用于评估ResNet50在ImageNet数据集上的性能。
  • LICENSE: 项目的许可证文件。
  • README.md: 项目的介绍和使用说明。
  • compute_flops.py: 计算模型浮点运算量的脚本。
  • filter.py: 数据集过滤相关的脚本。
  • main.py: 项目的主启动文件。
  • main_c.py: 主启动文件的变种,可能用于特定配置。
  • main_c_lp.py: 低精度训练的主启动文件。
  • main_lp.py: 低精度训练的主启动文件。
  • main_resnet50.py: 专门用于ResNet50的主启动文件。
  • main_scratch.py: 从零开始训练的主启动文件。
  • main_scratch_lp.py: 从零开始低精度训练的主启动文件。
  • mask_cr.py: 掩码相关操作的脚本。
  • plot_overlap.py: 绘制掩码距离矩阵的脚本。
  • resprune.py: ResNet模型剪枝的脚本。
  • resprune_50.py: ResNet50模型剪枝的脚本。
  • resprune_lp.py: 低精度ResNet模型剪枝的脚本。
  • vggprune.py: VGG模型剪枝的脚本。
  • vggprune_lp.py: 低精度VGG模型剪枝的脚本。
  • vggprune_lp_protective.py: 保护性低精度VGG模型剪枝的脚本。

2. 项目启动文件介绍

main.py

main.py 是项目的默认启动文件,用于执行标准的训练流程。它包含了模型的初始化、数据加载、训练循环等核心功能。

main_c.py

main_c.pymain.py 的一个变种,可能用于特定的配置或实验。

main_lp.py

main_lp.py 是用于低精度训练的主启动文件,适用于需要减少计算资源和内存占用的场景。

main_resnet50.py

main_resnet50.py 是专门用于ResNet50模型的启动文件,包含了针对ResNet50模型的特定配置和训练逻辑。

main_scratch.py

main_scratch.py 是从零开始训练的主启动文件,适用于从头开始训练模型的场景。

main_scratch_lp.py

main_scratch_lp.py 是从零开始低精度训练的主启动文件,适用于需要从零开始且使用低精度训练的场景。

3. 项目的配置文件介绍

项目中没有显式的配置文件,但可以通过命令行参数或环境变量来配置项目的运行参数。以下是一些常见的配置选项:

数据集配置

  • dataset: 指定要使用的数据集,如CIFAR10或CIFAR100。
  • data: 如果使用ImageNet数据集,需要指定数据路径。

训练配置

  • batch-size: 批处理大小,默认值为256。
  • epochs: 总训练轮数,默认值为160。
  • schedule: 学习率衰减的轮数点,默认值为[80, 120]。
  • lr: 初始学习率,默认值为0.1。
  • save: 保存检查点的目录。
  • arch: 要使用的模型架构,支持vgg和resnet。
  • depth: 模型深度。
  • filter: 数据集过滤选项,默认值为none。
  • sparsify_gt: 数据集稀疏化百分比。
  • gpu_ids: 支持多GPU训练。

通过这些配置选项,可以灵活地调整项目的运行参数,以适应不同的实验需求。

Early-Bird-Tickets [ICLR 2020] Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks 项目地址: https://gitcode.com/gh_mirrors/ea/Early-Bird-Tickets

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温宝沫Morgan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值