探索pgANN:基于PostgreSQL的近似最近邻搜索库

探索pgANN:基于PostgreSQL的近似最近邻搜索库

pgANNFast Approximate Nearest Neighbor (ANN) searches with a PostgreSQL database. 项目地址:https://gitcode.com/gh_mirrors/pg/pgANN

在人工智能和机器学习任务中,近似最近邻(ANN)搜索是一种强大的工具。然而,许多现有的解决方案,如faiss、Annoy或Nearpy,依赖于内存中的向量存储,限制了它们在处理大规模数据集时的能力。现在,我们向您推荐一个全新的开源项目——pgANN,它利用强大的PostgreSQL数据库进行ANN搜索,解决了上述问题,并且支持在线模式下的CRUD操作。

项目介绍

pgANN是一个巧妙的设计,将ANN算法与PostgreSQL数据库相结合,允许您在不加载全部数据到内存的情况下进行高效搜索。它被设计用于管理大规模图像集合,尤其适用于那些需要实时更新的数据集。pgANN能以亚秒级的速度处理数百万行数据,使您能够在有限的硬件资源上运行高效的搜索服务。

项目技术分析

pgANN利用了PostgreSQL的cube类型和GIST索引来实现高效的空间索引。虽然cube类型在维度超过100时存在限制,但通过降维技术(如UMAP或t-SNE),依然可以有效地处理高维数据。此外,pgANN查询时排名,无需在每次数据操作后重新训练模型,这使得它可以轻松应对在线环境中的数据变化。

应用场景

pgANN适用于各种场景,包括但不限于:

  1. 多媒体内容检索:快速找到相似的图片、音频或视频。
  2. 推荐系统:基于用户的兴趣或其他特征,推荐相关的商品或信息。
  3. 自然语言处理:为文本匹配最相关的话题或内容。
  4. 实时流数据分析:在数据持续流入的过程中,实时提供最接近的数据点。

项目特点

  1. 集成简单:只利用PostgreSQL的查询和索引功能,无需额外工具。
  2. 元数据一并获取:在查找“邻居”的同时,能获取相关元数据。
  3. 在线模式:CRUD操作无需重新训练,提高了系统响应速度。
  4. 扩展性强:可结合传统的数据库优化技术(如分区)来提升性能。

pgANN可能无法像某些专用工具那样提供最高的精度,但它能帮助您快速筛选出一组候选结果,然后使用您的首选度量标准进行二次排序,以达到最佳效果。

要开始使用pgANN,只需安装PostgreSQL 10.x+,启用cube扩展,创建相应的表结构并构建索引,最后填充数据并执行查询。项目文档中提供了详细的设置和查询示例,让您可以轻松上手。

总之,pgANN为大数据环境下的实时搜索提供了一个新的视角,无论您是开发人员还是数据科学家,都值得一试。欢迎加入社区,分享你的反馈和改进建议,共同推动这一领域的发展。

pgANNFast Approximate Nearest Neighbor (ANN) searches with a PostgreSQL database. 项目地址:https://gitcode.com/gh_mirrors/pg/pgANN

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缪昱锨Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值