Langfun 开源项目教程

Langfun 开源项目教程

langfun Empower LLMs with Symbols. langfun 项目地址: https://gitcode.com/gh_mirrors/la/langfun

1. 项目介绍

Langfun 是一个由 PyGlove 提供支持的库,旨在使语言模型(LM)的使用变得更加有趣。它通过将语言视为函数,实现了自然语言和编程之间的无缝集成。Langfun 引入了面向对象的提示(Object-Oriented Prompting)方法,允许用户使用对象和类型提示语言模型,从而提供增强的控制并简化了代理开发。

Langfun 兼容多种流行的语言模型,如 Gemini、GPT、Claude 等,而且无需额外的微调即可使用。它提供了强大的可扩展性、简单的编程模型,并且可以轻松集成到任何 Python 代码库中,为开发者提供了一个高效的.eval框架。

2. 项目快速启动

首先,您需要安装 Langfun。可以使用以下命令安装最小依赖的 Langfun:

pip install langfun

如果要安装包含所有特性的完整 Langfun,可以使用:

pip install langfun[all]

以下是一个简单的快速启动示例,展示如何使用 Langfun 描述一张图片中的对象:

import langfun as lf
import pyglove as pg
from IPython import display

class Item(pg.Object):
    name: str
    color: str

class ImageDescription(pg.Object):
    items: list[Item]

# 加载一张图片
image = lf.Image.from_uri('https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/1646px-Solar_system.jpg')
display.display(image)

# 使用 Langfun 查询图片描述
desc = lf.query(
    'Describe objects in {{my_image}} from top to bottom.',
    ImageDescription,
    lm=lf.llms.Gpt4o(api_key='<your-openai-api-key>'),
    my_image=image
)

# 打印结果
print(desc)

请替换 <your-openai-api-key> 为您的 OpenAI API 密钥。

3. 应用案例和最佳实践

Langfun 的应用案例广泛,以下是一些最佳实践:

  • 使用 Langfun 进行图像描述生成,可以帮助开发者快速实现图像内容理解的自动化。
  • 在自然语言处理任务中,Langfun 可以作为强大的工具,用于构建复杂的对话系统或自动化问答系统。
  • Langfun 的模块化提示允许开发者灵活地组合文本和不同模态,为各种应用场景提供支持。

4. 典型生态项目

Langfun 作为 PyGlove 社区的一部分,与多个生态项目兼容。以下是一些典型的生态项目:

  • PyGlove:一个用于机器学习实验的 Python 库,它提供了丰富的工具来帮助开发者快速试验和部署模型。
  • Gemini、GPT、Claude 等:这些是 Langfun 支持的流行语言模型,它们可以与 Langfun 无缝集成,提供强大的语言处理能力。

通过使用 Langfun 和其生态项目,开发者可以更高效地构建和部署自然语言处理应用。

langfun Empower LLMs with Symbols. langfun 项目地址: https://gitcode.com/gh_mirrors/la/langfun

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缪昱锨Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值