Langfun 开源项目教程
langfun Empower LLMs with Symbols. 项目地址: https://gitcode.com/gh_mirrors/la/langfun
1. 项目介绍
Langfun 是一个由 PyGlove 提供支持的库,旨在使语言模型(LM)的使用变得更加有趣。它通过将语言视为函数,实现了自然语言和编程之间的无缝集成。Langfun 引入了面向对象的提示(Object-Oriented Prompting)方法,允许用户使用对象和类型提示语言模型,从而提供增强的控制并简化了代理开发。
Langfun 兼容多种流行的语言模型,如 Gemini、GPT、Claude 等,而且无需额外的微调即可使用。它提供了强大的可扩展性、简单的编程模型,并且可以轻松集成到任何 Python 代码库中,为开发者提供了一个高效的.eval框架。
2. 项目快速启动
首先,您需要安装 Langfun。可以使用以下命令安装最小依赖的 Langfun:
pip install langfun
如果要安装包含所有特性的完整 Langfun,可以使用:
pip install langfun[all]
以下是一个简单的快速启动示例,展示如何使用 Langfun 描述一张图片中的对象:
import langfun as lf
import pyglove as pg
from IPython import display
class Item(pg.Object):
name: str
color: str
class ImageDescription(pg.Object):
items: list[Item]
# 加载一张图片
image = lf.Image.from_uri('https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Solar_system.jpg/1646px-Solar_system.jpg')
display.display(image)
# 使用 Langfun 查询图片描述
desc = lf.query(
'Describe objects in {{my_image}} from top to bottom.',
ImageDescription,
lm=lf.llms.Gpt4o(api_key='<your-openai-api-key>'),
my_image=image
)
# 打印结果
print(desc)
请替换 <your-openai-api-key>
为您的 OpenAI API 密钥。
3. 应用案例和最佳实践
Langfun 的应用案例广泛,以下是一些最佳实践:
- 使用 Langfun 进行图像描述生成,可以帮助开发者快速实现图像内容理解的自动化。
- 在自然语言处理任务中,Langfun 可以作为强大的工具,用于构建复杂的对话系统或自动化问答系统。
- Langfun 的模块化提示允许开发者灵活地组合文本和不同模态,为各种应用场景提供支持。
4. 典型生态项目
Langfun 作为 PyGlove 社区的一部分,与多个生态项目兼容。以下是一些典型的生态项目:
- PyGlove:一个用于机器学习实验的 Python 库,它提供了丰富的工具来帮助开发者快速试验和部署模型。
- Gemini、GPT、Claude 等:这些是 Langfun 支持的流行语言模型,它们可以与 Langfun 无缝集成,提供强大的语言处理能力。
通过使用 Langfun 和其生态项目,开发者可以更高效地构建和部署自然语言处理应用。
langfun Empower LLMs with Symbols. 项目地址: https://gitcode.com/gh_mirrors/la/langfun