Bort 项目使用教程
1. 项目介绍
Bort 是一个用于 BERT 架构的最优子架构提取的开源项目。该项目通过应用完全多项式时间近似方案(FPTAS)来进行神经架构搜索,提取出 BERT 架构的最优子集。Bort 的有效大小(不包括嵌入层)仅为原始 BERT-large 架构的 5.5%,网络大小的 16%。它能够在 288 GPU 小时内完成预训练,这仅是预训练最高性能 BERT 参数架构变体(如 RoBERTa-large)所需时间的 1.2%。此外,Bort 在 CPU 上的运行速度比 BERT-base 快 7.9 倍(比 BERT/RoBERTa-large 快 20 倍),并且在多个公共自然语言理解(NLU)基准测试中表现优于其他压缩变体和一些非压缩变体。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.6.5 或更高版本。然后,安装项目所需的依赖包:
pip install -r requirements.txt
如果你需要进行预训练,建议从源代码安装 Horovod:
pip uninstall horovod
HOROVOD_CUDA_HOME=/usr/local/cuda-10.1 \
HOROVOD_WITH_MXNET=1 \
HOROVOD_GPU_ALLREDUCE=NCCL \
pip install horovod==0.16.2 --no-cache-dir
2.2 下载模型
如果你有 AWS CLI,可以通过以下命令下载模型:
aws s3 cp s3://alexa-saif-bort/bort params model/
2.3 运行测试
下载示例文本并将其放入 test_data/
目录中:
wget https://github.com/dmlc/gluon-nlp/blob/v0.9.x/scripts/bert/sample_text.txt
mv sample_text.txt test_data/
2.4 预训练
Bort 已经预训练完成,但如果你想尝试其他数据集,可以按照以下步骤进行预训练:
首先,对预训练文本进行分词:
python create_pretraining_data.py \
--input_file <input text> \
--output_dir <output directory> \
--dataset_name <dataset name> \
--dupe_factor <duplication factor> \
--num_outputs <number of output files>
推荐使用 --dataset_name openwebtext_ccnews_stories_books_cased
作为词汇表。
然后运行预训练蒸馏脚本:
./run_pretraining_distillation.sh <num gpus> <training data> <testing data> [optional teacher checkpoint]
2.5 微调
要微调 Bort,运行以下命令:
./run_finetune.sh <your task here>
建议调整 run_finetune.sh
中的超参数。
3. 应用案例和最佳实践
3.1 自然语言理解(NLU)
Bort 在多个自然语言理解基准测试中表现优异,尤其是在 GLUE 和 SuperGLUE 基准测试中。通过微调 Bort,可以在这些基准测试中获得比其他压缩变体更好的性能。
3.2 快速推理
由于 Bort 的架构较小且预训练时间短,它在推理任务中表现出色,尤其是在资源受限的环境中。例如,在嵌入式设备或移动设备上,Bort 可以提供比 BERT-base 更快的推理速度。
3.3 迁移学习
Bort 可以作为迁移学习的基础模型,应用于各种自然语言处理任务。通过在特定任务上微调 Bort,可以快速适应新的数据集,并获得良好的性能。
4. 典型生态项目
4.1 Hugging Face Transformers
Hugging Face 的 Transformers 库是一个广泛使用的自然语言处理库,支持多种预训练模型,包括 BERT 和 Bort。通过集成 Bort,可以在 Hugging Face 的生态系统中快速部署和使用 Bort 模型。
4.2 MXNet
Bort 项目使用了 MXNet 深度学习框架进行开发。MXNet 提供了高效的计算能力和灵活的 API,使得 Bort 的训练和推理过程更加高效。
4.3 Horovod
Horovod 是一个分布式深度学习训练框架,支持多种深度学习框架,包括 MXNet。通过使用 Horovod,可以加速 Bort 的预训练和微调过程,尤其是在大规模数据集上。
通过以上模块的介绍和实践,你可以快速上手并应用 Bort 项目,提升自然语言处理任务的性能和效率。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考