NeRF-pl:基于PyTorch-Lightning的神经辐射场实践教程
nerf_pl 项目地址: https://gitcode.com/gh_mirrors/ne/nerf_pl
项目介绍
NeRF-pl 是一个旨在简化并加速 Neural Radiance Fields (NeRF) 实现的开源项目,它利用了 PyTorch Lightning 框架。该项目不仅仅追求与原作相同的可重复性,而是更注重训练过程的效率与代码的易读性。它支持多GPU训练,并且提供了一系列的功能扩展,包括在Unity中的彩色网格重建、混合现实体验以及实时体积渲染。此外,NeRF-pl还添加了对“NeRF in the Wild”(NeRF-W)的支持,允许处理更为复杂的真实世界场景。项目采用了 MIT 许可证,确保了广泛的应用潜力。
项目快速启动
系统要求
- 操作系统:Ubuntu 18.04或更高版本
- 硬件:至少配备一个NVIDIA GPU且CUDA版本≥10.1(推荐RTX系列)
- 软件环境:Python 3.6+,Anaconda(推荐),PyTorch等
安装步骤
- 克隆仓库: 使用递归选项克隆仓库及依赖。
git clone --recursive https://github.com/kwea123/nerf_pl.git
- 创建并激活Conda环境
conda create -n nerf_pl python=3.6 conda activate nerf_pl
- 安装必要的Python包
pip install -r nerf_pl/requirements.txt
- 额外安装:可能需要手动安装
torchsearchsorted
。cd nerf_pl/torchsearchsorted && pip install .
快速运行示例
以Blender数据集为例,首先下载所需数据集,并设置正确的$BLENDER_DIR
,然后执行以下命令进行训练:
python nerf_pl/train.py \
--dataset_name blender \
--root_dir $BLENDER_DIR \
--N_importance 64 --img_wh 400 400 --noise_std 0 \
--num_epochs 16 --batch_size 1024 \
--optimizer adam --lr 5e-4 \
--lr_scheduler steplr --decay_step 2 4 8 --decay_gamma 0.5 \
--exp_name exp
可以通过TensorBoard监控训练进程:tensorboard --logdir logs/
。
应用案例和最佳实践
- 彩色网格重建:NeRF-pl不仅可以进行视图合成,还能从训练好的模型中重建出彩色的3D网格,适合用于虚拟展览或游戏资产制作。
- Unity集成:借助重建的场景,在Unity引擎中实现真实的互动体验和即时体积渲染,适用于混合现实应用开发。
为了达到最佳效果,建议深入了解每个配置项的意义,并根据具体场景调整参数,如增加批大小来优化难训场景的稳定性。
典型生态项目
NeRF-pl自身就是NeRF领域的一个典型生态组成部分,但它也鼓励与其他技术融合:
- Colab Integration:项目提供了Notebook,便于在Google Colab上无痛实验,降低了进入门槛。
- 与Unity的深度结合:通过提供的Unity项目,可以探索如何将NeRF模型应用于游戏和交互式内容创作,推动混合现实应用发展。
- 研究拓展:尽管NeRF-pl以简化与速度为主,但其灵活性使其成为研究者尝试NeRF新变种(如NeRF-W)的理想平台。
通过不断整合社区贡献和学术界的新发现,NeRF-pl持续演进,成为了神经辐射场应用与研究的重要工具之一。