推荐:HIIT PI —— 在家高效间歇训练的智能助手

推荐:HIIT PI —— 在家高效间歇训练的智能助手

hiitpiA workout trainer Dash/Flask app that helps track your HIIT workouts by analyzing real-time video streaming from your sweet Pi using machine learning and Edge TPU..项目地址:https://gitcode.com/gh_mirrors/hi/hiitpi

项目介绍

HIIT PI 是一个基于Dash的应用程序,利用机器学习(具体来说是姿态估计)在树莓派边缘设备上实时跟踪你的高强度间歇训练(HIIT)进度(约30fps)。后端在树莓派本地运行,而你可以通过连接到同一局域网内的任意Web浏览器与应用交互。

技术分析

HIIT PI 集成了Google Coral USB Accelerator(Edge TPU),利用高效的边缘计算进行实时的图像处理和姿态检测。它依赖DockerDocker Compose 来管理和运行容器化环境,保证了软件的可移植性和稳定性。此外,它还使用Python 3.7+作为主要开发语言,确保兼容性和强大的数据处理能力。

应用场景

无论你是健身达人,还是寻求在家锻炼的爱好者,HIIT PI 都能成为你的理想助手。只需将树莓派、摄像头和Edge TPU连接好,你就可以在任何连接到同一网络的设备上打开应用,开始监测和记录你的训练进度。无论是跑步、深蹲还是俯卧撑,它都能帮你准确计数并评估速度,让你的居家训练更具科学性。

项目特点

  1. 本地运行:所有运算都在本地完成,无需互联网连接,保护你的隐私。
  2. 实时反馈:提供实时的运动数据分析,包括动作识别得分和推断时间,帮助你更好地调整训练节奏。
  3. 直观界面:使用 Dash 创建的交互式网页界面,易于操作且显示清晰,让数据一目了然。
  4. 自定义工作量:支持多种预设的训练计划,未来还会添加更多选项,满足不同强度和类型的训练需求。
  5. 竞技模式:集成排行榜功能,可以查看自己与其他用户的总次数比较,增加训练的乐趣和挑战性。

要体验这个创新的智能训练助手,请按照项目README中的步骤设置,并开始你的HIIT旅程吧!同时,我们欢迎开发者社区的贡献,共同完善和扩展这一开源项目。

hiitpiA workout trainer Dash/Flask app that helps track your HIIT workouts by analyzing real-time video streaming from your sweet Pi using machine learning and Edge TPU..项目地址:https://gitcode.com/gh_mirrors/hi/hiitpi

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔岱怀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值