MV-DUSt3r+项目教程
1. 项目目录结构及介绍
MV-DUSt3r+
项目是一个开源的三维场景重建项目,其目录结构如下:
mvdust3r/
├── checkpoints/ # 存放预训练模型权重文件
├── croco/ # 与项目相关的CUDA操作实现
├── data/ # 存放训练和测试所需的数据集
├── datasets_preprocess/ # 数据预处理脚本
├── dust3r/ # 主项目文件和模块
├── scripts/ # 项目运行脚本,包括训练、测试等
├── static/ # 静态文件,如项目页面所用资源
├── trajectories/ # 存放相机轨迹文件
├── CODE_OF_CONDUCT.md # 项目行为准则
├── CONTRIBUTING.md # 贡献指南
├── LICENSE # 项目许可证
├── README.md # 项目说明文件
├── demo.py # 演示脚本
├── inference_global_optimization.py # 全局优化推理脚本
├── inference_global_optimization_batch.py # 批量全局优化推理脚本
├── install.sh # 安装脚本
├── requirements.txt # 项目依赖列表
├── train.py # 训练脚本
各目录和文件功能简介:
checkpoints/
:包含预训练模型的权重文件。croco/
:包含项目的CUDA相关实现,可能用于模型的特定部分。data/
:存放用于训练和测试的数据集文件。datasets_preprocess/
:包含数据预处理的脚本,用于准备训练数据。dust3r/
:存放项目的主要代码,包括模型定义、训练和测试逻辑等。scripts/
:包含用于运行项目的各种脚本,如训练、测试和演示等。static/
:包含静态文件,例如项目网页的资源。trajectories/
:存放相机轨迹文件,用于评估和测试。- 其他文件:包括项目说明、许可、贡献指南等文档。
2. 项目的启动文件介绍
项目的启动主要依赖于scripts/
目录下的脚本。
demo.py
:用于启动项目的演示模式。通过该脚本可以加载预训练模型权重,并对输入的多张图片或视频进行三维重建。train.py
:用于启动模型训练流程。用户需要配置相应的参数,如数据集路径、模型参数等。
3. 项目的配置文件介绍
项目的配置主要通过修改脚本中的参数进行。
- 在
demo.py
和train.py
等脚本中,用户可以找到各种配置参数,如数据集路径、模型权重路径、训练参数等。 requirements.txt
:包含项目运行所需的Python库和依赖,使用pip install -r requirements.txt
命令安装所有依赖。install.sh
:Shell脚本,用于自动化安装项目依赖和所需的环境。
请注意,具体的配置参数和方法需要参考项目提供的README.md
文件以及相关脚本的注释说明。