Anime4K 开源项目使用教程

Anime4K 开源项目使用教程

Anime4K A High-Quality Real Time Upscaler for Anime Video 项目地址: https://gitcode.com/gh_mirrors/an/Anime4K

1. 项目介绍

Anime4K 是一个开源的高质量实时动漫视频放大(upscaling)和去噪(denoising)算法集合。该项目旨在通过简单的算法和快速的实现,让用户能够在实时观看中将1080p的动漫视频放大到4K分辨率。Anime4K 强调保留原始内容并促进动漫爱好者的自由选择,避免了对动漫进行4K重编码,因为这可能会引入不可逆的损坏和额外的磁盘空间占用。

2. 项目快速启动

2.1 克隆项目

首先,你需要将项目克隆到本地:

git clone https://github.com/bloc97/Anime4K.git
cd Anime4K

2.2 安装依赖

Anime4K 依赖于一些开源库,如 OpenCV、TensorFlow、Keras 和 Torch。确保你已经安装了这些依赖项。

2.3 运行示例

以下是一个简单的示例代码,展示如何使用 Anime4K 进行视频放大:

import cv2
from Anime4K import Anime4K

# 加载视频
cap = cv2.VideoCapture('input_video.mp4')

# 初始化 Anime4K
anime4k = Anime4K()

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
    
    # 使用 Anime4K 放大帧
    upscaled_frame = anime4k.process(frame)
    
    # 显示结果
    cv2.imshow('Upscaled Video', upscaled_frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

3. 应用案例和最佳实践

3.1 实时视频放大

Anime4K 特别适用于需要实时放大视频的场景,如在4K屏幕上观看1080p的动漫视频。通过使用 Anime4K,用户可以在不损失太多质量的情况下享受高分辨率的观看体验。

3.2 视频去噪

除了放大功能,Anime4K 还提供了去噪算法,可以有效减少视频中的噪点和压缩伪影,提升视频的整体质量。

3.3 自定义配置

Anime4K 允许用户根据特定的动漫类型或个人喜好进行自定义配置。例如,用户可以选择不同的放大算法或调整去噪强度,以获得最佳的观看效果。

4. 典型生态项目

4.1 Magpie

Magpie 是一个全功能的 GUI 放大器,适用于 Windows 10/11。它集成了 Anime4K 算法,并提供了友好的用户界面,方便用户进行视频放大操作。

4.2 Anime4KMetal

Anime4KMetal 是基于 Metal 的 Anime4K 实现,专为 Apple 平台设计。它利用 Metal 的强大性能,提供了高效的实时放大功能。

4.3 Anime4K-GUI

Anime4K-GUI 是一个基于 Anime4K 的 GUI 应用程序,允许用户将放大后的视频保存到磁盘。它提供了简单易用的界面,适合不熟悉命令行的用户。

4.4 Anime4KCPP

Anime4KCPP 是 Anime4K 的 C++ 实现,支持更多的算法和功能。它适合需要高性能和灵活性的开发者使用。

通过这些生态项目,Anime4K 不仅在技术上提供了强大的支持,也在用户体验上不断优化,满足了不同用户的需求。

Anime4K A High-Quality Real Time Upscaler for Anime Video 项目地址: https://gitcode.com/gh_mirrors/an/Anime4K

告别AV画质:实时把动画变成4k高清,延时仅3毫秒,登上GitHub趋势榜 量子位 量子位 ​ 已认证的官方帐号 7,564 人赞同了该文章 栗子 发自 凹非寺 量子位 出品 | 公众号 QbitAI △ 来自《珈百璃的堕落》 看动画 (特别是里番) 的时候,总会觉得画质不够好,就算已经有1080p,还是会感到不够清晰。 所以,这个世界十分需要一套拯救分辨率的魔法。 如今,有个名叫Anime4K的开源算法,能在动画播放中,实时把画面变成4k,延时低至3毫秒。 能把720p/1080p变成2160p,也能把480p变成1080p。 团队说,这是当下最强 (State-of-the-Art) 的动画实时超分辨率方法,可以拿任何编程语言实现。 现在,项目已经在GitHub摘下3700多颗星,并一度登上了趋势榜。 那么,这个算法究竟是如何造福人类的? 只搞动画 团队在论文里感慨道: 传统超分辨率算法 (如Bicubic) ,结果不怎么好,因为它们根本不是为了动画而生的。 传统的去模糊 (Unblurring) 或锐化 (Sharpening) 方式,在靠近物体边缘的时候会发生过冲 (Overshoot) ,分散观众注意力,降低图像的感知质量 (Perceptual Quality) 。 而机器学习方法 (如waifu2x) 又太慢,完全不能实时 (<30毫秒) ,尤其是需要超高清的时候。 △ waifu2x 而Anime4K,只处理动画就够了,不考虑其他视频类型。这一点很重要。 动画没有真实视频那么多纹理 (Textures) ,基本都是用平直着色法 (Flat Shading) 处理的物体和线条。 只要画质变好一点点,观众也看得出。所以团队机智地想到,不用做整张的画质提升,专注于细化边缘就可以了,纹理之类的细节不重要。 具体怎样做,要从超分辨率的原理开始讲: 首先,一张图可以分为两部分: 一是低频分量,就是一张模糊的低分辨率图。二是高频残差,代表两种分辨率之间的差别 (Difference) 。 输入一张低清图,把它变成一个更低清的版本,就能得出一个残差。 把残差变薄 (Thin) 、锐化 (Sharpen) ,再加到低清图上,就能得到一张高清图。 但残差稍稍有点错误,就会造成振铃和过冲,影响效果。这也是前辈的缺陷所在。 于是,团队找到了一种新方法: 首先把残差厚度最小化当做目标,这个没有问题。 但直接把随意变换(Arbitrarily Transformed)得到的残差,用到一张低清图上是不行的。低清图要做出相应改变,才能与残差和平相处,得出理想的超分辨率结果。 所以,当输入一张图和它的残差之后,“push”残差的像素,让残差线变细; 同时,每做一个push,都要在彩色的低清图上,执行一个相同的操作。 这样,既能把模糊最小化,也不会出现振铃和过冲,这两个降低画质的现象。 比一比吧 这场比赛,Anime4K (最右) 的对手有:来自madVR的不开源算法NGU前辈 (左二) ,以及开源的机器学习算法waifu2x前辈 (左三) 。 第一题,眼睛: 第二题,耳朵: 第三题,玉手: 第四题,全脸: waifu2x前辈的效果,明显不及Anime4K,常见虚影。速度也有明显缺陷,每张图耗时超过1秒。 NGU前辈生成的画质,与Anime4K相近,但也常常被Anime4K打败。 不止如此,NGU每张耗时~6毫秒,Anime4K只要~3毫秒,快了一倍,更加适应实时生成的需求了。 效果相近的话,为啥不直接用NGU?因为不开源。 如果,你觉得720p/1080p的动画,没必要变成4K这么奢侈,那还可以把480p拯救到1080p啊: 依然,Anime4K和没开源的NGU不相上下。 最后,尽管已经获得了精湛的画质提升技能,团队也没有就此抛弃机器学习的力量。 因为在拯救静止画作 (而非动画) 的时候,Anime4K的短板显现了。这时候,让机器学习选手waifu2x和它并肩作战,更加成功一些: 需要实时给动画提升分辨率,还是只用Anime4K吧。 反正也已经开源了。 项目传送门: bloc97/Anime4K ​ github.com 图标 论文传送门: https://github.com/bloc97/Anime4K/blob/master/Preprint.md ​ github.com — 完 —
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋或依

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值