VisRAG 使用教程
VisRAG Parsing-free RAG supported by VLMs 项目地址: https://gitcode.com/gh_mirrors/vis/VisRAG
1. 项目介绍
VisRAG(Vision-based Retrieval-augmented Generation)是一个基于视觉语言模型(VLM)的检索增强生成管道。该管道通过直接将文档以图像的形式嵌入VLM中,然后进行检索,以增强VLM的生成能力。与传统基于文本的RAG相比,VisRAG能够最大程度地保留和利用原始文档中的数据信息,消除了解析过程中引入的信息损失。
2. 项目快速启动
在开始之前,确保已经安装了Python环境,以下是基于VisRAG的快速启动步骤:
# 克隆项目
git clone https://github.com/OpenBMB/VisRAG.git
# 创建并激活虚拟环境
conda create --name VisRAG python==3.10.8
conda activate VisRAG
# 安装依赖
conda install nvidia/label/cuda-11.8.0::cuda-toolkit
cd VisRAG
pip install -r requirements.txt
pip install -e .
cd timm_modified
pip install -e .
cd ..
# 训练检索模型
bash scripts/train_retriever/train.sh 2048 16 8 0.02 1 true false config/deepspeed.json 1e-5 false wmean causal 1 true 2 false <model_dir> <repo_name_or_path>
# 评估检索模型
bash scripts/eval_retriever/eval.sh 512 2048 16 8 wmean causal ArxivQA,ChartQA,MP-DocVQA,InfoVQA,PlotQA,SlideVQA <ckpt_path>
请在上述命令中替换<model_dir>
和<repo_name_or_path>
以及<ckpt_path>
为实际路径。
3. 应用案例和最佳实践
VisRAG可以应用于多种场景,以下是一些典型的应用案例:
- 学术文献分析:通过VisRAG,可以检索和分析学术文献中的关键信息,提高文献综述的效率。
- 报告生成:自动从多个文档中检索相关内容,并生成综合报告。
最佳实践建议:
- 使用高质量的数据集进行训练,以提高模型的检索和生成能力。
- 在实际应用中,根据任务需求调整模型参数,以获得最佳性能。
4. 典型生态项目
VisRAG作为开源项目,其生态系统中有一些典型的项目,这些项目可以与VisRAG结合使用,以提供更完整的应用解决方案:
- 文档解析工具:可以结合文档解析工具来提取文档中的结构化信息。
- 自然语言处理库:与NLP库结合,可以进行更深入的文本分析和生成。
以上是VisRAG的基本使用教程,希望对您有所帮助。
VisRAG Parsing-free RAG supported by VLMs 项目地址: https://gitcode.com/gh_mirrors/vis/VisRAG
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考