斯坦福CS230深度学习项目教程
1. 项目目录结构及介绍
stanford-cs-230-deep-learning/
├── LICENSE
├── README.md
├── cheatsheets/
│ ├── deep_learning_cheatsheets.pdf
│ ├── deep_learning_cheatsheets_zh.pdf
│ └── ...
├── code/
│ ├── data/
│ ├── models/
│ ├── utils/
│ ├── main.py
│ └── ...
├── configs/
│ ├── config.yaml
│ └── ...
└── ...
目录结构介绍
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档,包含项目的基本信息、使用方法等。
- cheatsheets/: 包含深度学习相关的速查表(Cheatsheets),提供快速参考。
- code/: 项目的核心代码目录,包含数据处理、模型定义、工具函数等。
- data/: 存放训练和测试数据。
- models/: 存放深度学习模型的定义文件。
- utils/: 存放各种工具函数和辅助代码。
- main.py: 项目的启动文件,负责模型的训练和测试。
- configs/: 存放项目的配置文件,如
config.yaml
。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,负责模型的训练和测试。以下是该文件的主要功能模块:
- 数据加载: 从
data/
目录中加载训练和测试数据。 - 模型定义: 从
models/
目录中导入并初始化深度学习模型。 - 训练过程: 使用加载的数据对模型进行训练,并保存训练过程中的模型权重。
- 测试过程: 使用测试数据对训练好的模型进行评估,输出评估结果。
使用方法
python main.py --config configs/config.yaml
通过命令行参数--config
指定配置文件路径,启动训练或测试过程。
3. 项目的配置文件介绍
config.yaml
config.yaml
是项目的配置文件,用于配置训练和测试过程中的各种参数。以下是该文件的主要配置项:
# 数据路径配置
data:
train_data_path: "data/train.csv"
test_data_path: "data/test.csv"
# 模型配置
model:
name: "CNN"
input_shape: [28, 28, 1]
num_classes: 10
# 训练配置
training:
batch_size: 32
epochs: 10
learning_rate: 0.001
# 其他配置
misc:
save_model_path: "models/trained_model.h5"
配置项介绍
- data: 配置训练和测试数据的路径。
- model: 配置模型的名称、输入形状和类别数。
- training: 配置训练过程中的批量大小、训练轮数和学习率。
- misc: 配置其他杂项,如模型保存路径。
通过修改config.yaml
文件中的配置项,可以灵活调整训练和测试过程中的参数。