探索经典游戏的现代魅力:Chocolate Doom

探索经典游戏的现代魅力:Chocolate Doom

chocolate-doom Chocolate Doom is a Doom source port that is minimalist and historically accurate. 项目地址: https://gitcode.com/gh_mirrors/ch/chocolate-doom

1、项目介绍

Chocolate Doom是一个致力于重现原版DOS Doom及其他基于Doom引擎游戏的开源项目。它不仅仅是一个源代码移植,还包括Heretic、Hexen和Strife的游戏端口。该项目旨在为现代计算机提供一个可运行的环境,让玩家能够体验到原汁原味的经典游戏感觉。

2、项目技术分析

Chocolate Doom的核心目标是保持100%自由和开放源代码软件,确保在各种操作系统上的可移植性,并准确复制原版DOS游戏的行为,包括那些经典的bug。此外,项目还兼容DOS版本的演示、配置和保存文件,力求带给玩家复古的显示和输入体验。

配置文件方面,Chocolate Doom与DOS Doom的default.cfg文件兼容,并提供额外的chocolate-doom.cfg文件以满足定制需求。它还配备了chocolate-setup工具,让用户轻松编辑配置。

在命令行选项上,除了支持Vanilla Doom的基本参数外,还新增了一些增强功能,比如-merge选项,用于合并Total Conversion (TC) 游戏内容到主IWAD中,无需修改原始文件。

3、项目及技术应用场景

无论是对90年代经典游戏的怀旧者,还是对游戏历史有兴趣的新玩家,Chocolate Doom都是完美的选择。它允许你在现代化的系统上享受Doom系列游戏的魅力,如Batman Doom和Army of Darkness Doom等TC作品。此外,对于开发者来说,这是一个研究早期游戏引擎工作原理的绝佳案例。

4、项目特点

  • 100% 免费和开源:遵循GNU GPL许可,鼓励社区参与和贡献。
  • 高度兼容:不仅兼容DOS版本的游戏文件,还有额外的设置项以模拟原始DOS体验。
  • 跨平台:可在多种现代操作系统上运行,包括Windows、Mac OS X和Linux。
  • 创新功能-merge选项简化了Total Conversion的游玩方式,无需修改原始游戏文件。

如果你想要重温那些年少时的激情,或者对游戏开发的历史感兴趣, Chocolate Doom无疑是你不能错过的项目。访问https://www.chocolate-doom.org/ 获取更多信息,开启你的复古游戏之旅!




chocolate-doom Chocolate Doom is a Doom source port that is minimalist and historically accurate. 项目地址: https://gitcode.com/gh_mirrors/ch/chocolate-doom

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咎旗盼Jewel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值