LISA:基于TensorFlow的语义角色标注中语言学指导的自注意力模型教程
1. 项目目录结构及介绍
LISA 是一个开源项目,实现了在 TensorFlow 环境下的语义角色标注(Semantic Role Labeling, SRL)模型,特别强调了语言学信息在自注意力机制中的应用。下面是该项目的基本目录结构及其简要说明:
- .git/
Git版本控制相关文件。
- bin/
包含项目的脚本文件,如训练和评估模型的命令脚本。
- train.sh: 启动模型训练的脚本。
- evaluate.sh: 运行模型评价的脚本。
- evaluate-exported.sh: 用于评估导出模型的脚本。
- config/
配置文件所在目录,包括数据配置、任务配置、模型配置等。
- conll05.conf, conll05-lisa.conf: 示例顶级配置文件,定义具体模型配置和数据集。
- 数据、任务、层、注意力相关的json配置文件。
- src/
项目的核心源代码,包含模型实现、训练逻辑等。
- train.py: 训练主要入口文件。
- licenses/, .gitignore, README.md, LICENSE
分别为许可证文件、Git忽略文件、项目阅读文件和软件许可协议。
此结构清晰地将数据处理、模型训练和配置管理分离,便于开发者和研究人员快速理解和定制。
2. 项目的启动文件介绍
训练启动
项目的训练通过 bin/train.sh
脚本来执行,该脚本接受配置文件路径作为参数,以启动训练过程。例如,使用配置 conll05-lisa.conf
训练模型,并指定保存目录,命令如下:
bin/train.sh config/conll05-lisa.conf --save_dir model
评估启动
对于模型的评估,有两个脚本可用:
- 直接评估最新检查点:使用
bin/evaluate.sh
- 评估已导出的最佳模型:使用
bin/evaluate-exported.sh
这两个脚本同样需要配置文件路径和模型存储目录作为输入参数。
3. 项目的配置文件介绍
配置文件是项目定制的关键,位于 config/
目录下。主要类型包括:
- 顶级配置文件(如
conll05-lisa.conf
):指定了数据来源、模型配置、任务配置等其他配置文件的路径。 - 模型配置文件(例:
glove_basic.json
):定义了模型架构细节,如层数、每层的大小、自注意力头数等。 - 任务配置文件(如:
joint_pos_predicate.json
):详细描述特定自然语言处理任务的设置,如联合词性标注和谓词识别。 - 注意力配置文件(例:
parse_attention.json
):指定自注意力机制的相关配置,可能依据特定的语言学特性进行调整。 - 数据配置文件(如:
conll05.conf
):提供了数据集的具体路径和预处理指示。
这些配置文件采用JSON格式编写,允许灵活调整来匹配不同实验需求或适应不同的数据集。通过修改这些配置,用户可以无需改动源码即可调整模型的训练流程、优化参数和任务设定。