LISA:基于TensorFlow的语义角色标注中语言学指导的自注意力模型教程

LISA:基于TensorFlow的语义角色标注中语言学指导的自注意力模型教程

LISA Linguistically-Informed Self-Attention implemented in TensorFlow 项目地址: https://gitcode.com/gh_mirrors/lisa/LISA

1. 项目目录结构及介绍

LISA 是一个开源项目,实现了在 TensorFlow 环境下的语义角色标注(Semantic Role Labeling, SRL)模型,特别强调了语言学信息在自注意力机制中的应用。下面是该项目的基本目录结构及其简要说明:

- .git/
  Git版本控制相关文件。
- bin/
  包含项目的脚本文件,如训练和评估模型的命令脚本。
    - train.sh: 启动模型训练的脚本。
    - evaluate.sh: 运行模型评价的脚本。
    - evaluate-exported.sh: 用于评估导出模型的脚本。
- config/
  配置文件所在目录,包括数据配置、任务配置、模型配置等。
    - conll05.conf, conll05-lisa.conf: 示例顶级配置文件,定义具体模型配置和数据集。
    - 数据、任务、层、注意力相关的json配置文件。
- src/
  项目的核心源代码,包含模型实现、训练逻辑等。
    - train.py: 训练主要入口文件。
- licenses/, .gitignore, README.md, LICENSE
  分别为许可证文件、Git忽略文件、项目阅读文件和软件许可协议。

此结构清晰地将数据处理、模型训练和配置管理分离,便于开发者和研究人员快速理解和定制。

2. 项目的启动文件介绍

训练启动

项目的训练通过 bin/train.sh 脚本来执行,该脚本接受配置文件路径作为参数,以启动训练过程。例如,使用配置 conll05-lisa.conf 训练模型,并指定保存目录,命令如下:

bin/train.sh config/conll05-lisa.conf --save_dir model

评估启动

对于模型的评估,有两个脚本可用:

  • 直接评估最新检查点:使用 bin/evaluate.sh
  • 评估已导出的最佳模型:使用 bin/evaluate-exported.sh

这两个脚本同样需要配置文件路径和模型存储目录作为输入参数。

3. 项目的配置文件介绍

配置文件是项目定制的关键,位于 config/ 目录下。主要类型包括:

  • 顶级配置文件(如 conll05-lisa.conf):指定了数据来源、模型配置、任务配置等其他配置文件的路径。
  • 模型配置文件(例:glove_basic.json):定义了模型架构细节,如层数、每层的大小、自注意力头数等。
  • 任务配置文件(如:joint_pos_predicate.json):详细描述特定自然语言处理任务的设置,如联合词性标注和谓词识别。
  • 注意力配置文件(例:parse_attention.json):指定自注意力机制的相关配置,可能依据特定的语言学特性进行调整。
  • 数据配置文件(如:conll05.conf):提供了数据集的具体路径和预处理指示。

这些配置文件采用JSON格式编写,允许灵活调整来匹配不同实验需求或适应不同的数据集。通过修改这些配置,用户可以无需改动源码即可调整模型的训练流程、优化参数和任务设定。

LISA Linguistically-Informed Self-Attention implemented in TensorFlow 项目地址: https://gitcode.com/gh_mirrors/lisa/LISA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咎旗盼Jewel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值