引领未来的漏洞狩猎:基于AI的模糊测试框架深度解析

引领未来的漏洞狩猎:基于AI的模糊测试框架深度解析

oss-fuzz-genLLM powered fuzzing via OSS-Fuzz.项目地址:https://gitcode.com/gh_mirrors/os/oss-fuzz-gen

项目介绍

在软件安全的前线,有一个崭新的框架正悄然改变着我们对代码质量的检验方式——一个专为生成和评估模糊测试目标而生的强大工具。该框架利用了大型语言模型(LLM),如Vertex AI Code-Bison、Gemini Pro以及OpenAI的明星产品GPT-3.5-turbo与GPT-4等,与知名的【OSS-Fuzz】平台携手,对真实的C/C++项目进行了一场智能化的“漏洞探索之旅”。

技术分析

这一创新之作巧妙地结合了自然语言处理与软件工程的智慧,让AI模型担当起编写测试用例的重任。通过精心设计的提示模板,这些智能体能够自动生成可编译的模糊测试代码,并非简单模拟,而是真正达到了挑战现有软件极限的能力。其背后的技术栈不仅涉及深度学习模型的应用,还包括高效的编译器接口、覆盖率分析工具,以及与OSS-Fuzz平台的无缝对接,确保了从生成到执行再到评估的一整套自动化流程。

应用场景

想象一下,对于庞大的开源社区来说,这个框架意味着加速发现并修复安全隐患的新途径。它尤其适用于那些维护资源有限但安全性至关重要的项目。无论是网络服务、嵌入式系统库还是数据分析工具,任何C/C++代码都可以成为它的用武之地。尤其是在那些人工难以触达的复杂逻辑分支中,AI的直觉往往能带来意想不到的覆盖提升,如tinyxml2项目中的近30%覆盖率增长便是明证。

项目特点

  • AI驱动的创新:利用前沿的自然语言处理技术自动生成测试代码,跨越了传统手动编写测试用例的效率瓶颈。

  • 全面的评价体系:不仅关注生成的测试代码是否可运行,更重视其实际效果,包括崩溃检测、覆盖率提升等多个维度。

  • 广泛的支持性:兼容多款主流LLM,为不同的项目提供定制化的解决方案。

  • 实战验证的有效性:已成功应用于超过160个C/C++项目,发现多处之前未被识别的安全漏洞。

  • 透明度与合作精神:鼓励研究与社区合作,共享研究成果,推动整个行业向前发展。

借助这份强大的开源工具,开发者和安全研究人员可以更加高效地守护软件安全的底线,揭开隐藏在代码深处的漏洞,构建更为健壮的应用环境。现在,是时候加入这场由AI引领的软件质量革命,探索未知的bug狩猎之路了。

在接下来的开发与应用旅程中,让我们一起见证AI与软件安全的深度交融,共同推进技术的边界。立即行动,深入阅读官方文档,开启你的模糊测试自动化之旅!

oss-fuzz-genLLM powered fuzzing via OSS-Fuzz.项目地址:https://gitcode.com/gh_mirrors/os/oss-fuzz-gen

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金畏战Goddard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值