推荐:CBIM-Medical-Image-Segmentation — 深度学习医疗影像分割框架
项目介绍
在医疗领域,准确的图像分割是疾病诊断和治疗规划的关键。CBIM-Medical-Image-Segmentation 是一个基于 PyTorch 的开放源代码框架,致力于为学术研究者提供一个简单易用的平台,以开发和评估深度学习模型。该框架支持多种卷积神经网络(CNN)和变换器模型,并对多个医学图像数据集进行公平的评价与对比。
项目技术分析
CBIM-Medical-Image-Segmentation 集成了最新的技术和优化策略,如:
- 支持 PyTorch 2.0,提供了新的教程。
- 利用 GPU 进行数据增强,加速训练过程。
- 更新了 MedFormer 研究的修订版本,包括更多实验和分析。
- 添加了对新数据集的支持,如 AMOS22 和 KiTS19。
- 实现了 PyTorch 的分布式数据并行(DDP)和自动混合精度(AMP)训练。
此外,项目还涵盖了模型定义、配置、训练和评估的全过程,支持 2D、3D 数据、多模态以及多种任务的模型、损失函数、指标和增广方法。
项目及技术应用场景
- 医学研究:研究人员可以利用此框架快速实现和比较不同的深度学习模型,推动医学图像分割的进步。
- 教育培训:教学中可作为实例,帮助学生理解深度学习在医疗影像处理的应用。
- 临床实践:医院和诊所可以借此评估新技术的效果,提升诊断效率和准确性。
项目特点
- 全面性:涵盖从数据预处理到模型评估的全套流程,并提供多种 SOTA 模型作为基准。
- 易用性:模型定义、训练和评估代码简洁明了,无复杂的封装。
- 多样性:支持 2D、3D、多模态和多任务的模型,包括但不限于 MedFormer、UNet 及其变体、Transformer 基于的模型等。
- 灵活性:不仅可以直接在其他框架中使用提供的模型,还能通过自定义配置文件轻松调整训练参数。
- 持续更新:持续添加新模型和数据集,保持与时俱进。
支持模型一览
- MedFormer
- UNet(不同构建块)
- UNet++
- Attention UNet
- Dual Attention
- TransUNet
- SwinUNet
- UNETR
- VT-UNet
- nnFormer
- SwinUNETR
- 更多模型即将推出...
引用
如果您发现本项目有所帮助,请引用以下相关论文:
@inproceedings{gao2021utnet,
title={UTNet: a hybrid transformer architecture for medical image segmentation},
author={Gao, Yunhe and Zhou, Mu and Metaxas, Dimitris N},
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
pages={61--71},
year={2021},
organization={Springer}
}
@article{gao2022data,
title={A data-scalable transformer for medical image segmentation: architecture, model efficiency, and benchmark},
author={Gao, Yunhe and Zhou, Mu and Liu, Di and Yan, Zhennan and Zhang, Shaoting and Metaxas, Dimitris N},
journal={arXiv preprint arXiv:2203.00131},
year={2022}
}
CBIM-Medical-Image-Segmentation 提供了一个强大且灵活的工具箱,无论你是科研新手还是经验丰富的开发者,都能从中受益。立即加入,探索医疗影像分割的无限可能!