Funktion 开源项目安装与使用教程

Funktion 开源项目安装与使用教程

funktiona CLI tool for working with funktion项目地址:https://gitcode.com/gh_mirrors/fu/funktion

1. 项目目录结构及介绍

Funktion 是一个基于特定技术栈(如Python或Node.js)构建的轻量级函数计算平台。它的设计目的是简化事件驱动的微服务开发。下面简要介绍其核心目录结构:

  • .funktion home/: 此目录通常包含了Funktion的配置文件和相关运行时环境设置。
  • docs: 包含了项目的官方文档,对于初学者而言是了解项目特性和使用的起点。
  • examples: 提供了一系列示例代码,帮助开发者快速理解如何使用Funktion来定义和部署函数。
  • funktion: 核心源码目录,其中可能包括主要的库文件和服务逻辑。
    • cli: 命令行工具相关的代码,用于管理函数的生命周期。
    • core: Funktion的核心处理逻辑,负责函数的编译、触发和执行等。
  • tests: 单元测试和集成测试的存放地,确保功能稳定可靠。
  • setup.py: Python项目的标准入口文件,用于项目的安装和依赖管理。
  • README.md: 项目简介、快速入门指南和基本使用说明。

2. 项目启动文件介绍

在Funktion项目中,并没有明确指出单个“启动文件”,因为作为一个涉及多个组件的平台,它通常通过命令行界面(CLI)进行交互式操作或者通过自动化脚本来启动服务。不过,开发者或运维人员可以通过执行以下命令来初始化和启动Funktion环境:

  • 安装后,主要通过funktion cli命令来管理和运行Funktion。例如,首次设置可能涉及到的命令类似于:

    funktion init
    

    这将指导创建初始的项目结构或者设置本地环境。

  • 部署函数可能会使用到类似:

    funktion deploy --function my_function
    

因此,虽然没有传统意义上的单一“启动文件”,但项目的入口点更多地体现在这些命令行指令上。

3. 项目的配置文件介绍

Funktion的配置主要是通过几个关键的文件来实现的,这些配置可以帮助调整Funktion的行为以适应不同场景:

  • .funktion/config.yaml: 这是一个典型的配置文件路径,虽然具体命名和结构需参照实际项目文档。该文件可以用来设定默认的运行时环境、编排服务端口、日志级别等。

  • 环境变量也可能被用作配置的一部分,尤其是在部署和运行阶段,允许动态配置而无需修改文件。

  • 特定于函数的配置可能存储在每个函数的元数据中,遵循Funktion的约定或使用自定义方式指定。

请注意,由于开源项目持续更新,具体的文件名、目录结构和配置方式可能会有所变化。务必参考最新版本的README.md文件和项目文档以获取最精确的信息。

funktiona CLI tool for working with funktion项目地址:https://gitcode.com/gh_mirrors/fu/funktion

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强妲佳Darlene

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值