探索Flowing Retail:微服务与事件驱动的零售订单系统

探索Flowing Retail:微服务与事件驱动的零售订单系统

flowing-retailSample application demonstrating an order fulfillment system decomposed into multiple independant components (e.g. microservices). Showing concrete implementation alternatives using e.g. Java, Spring Boot, Apache Kafka, Camunda, Zeebe, ...项目地址:https://gitcode.com/gh_mirrors/fl/flowing-retail

项目简介

Flowing Retail是一个开源示例应用,展示了如何构建一个简单的订单履行系统,由多个独立组件(如微服务)组成。该项目旨在帮助开发者理解和比较不同的实现方式,同时引入了领域驱动设计(DDD)、事件驱动架构(EDA)和微服务(µS)的概念。

该项目通过模拟零售行业的业务流程,为读者提供了实践经验,包括从创建订单到支付、库存检查以及发货等一系列环节。其代码结构清晰,易于理解,特别适合希望深入了解微服务和事件驱动架构的人群。

项目技术分析

Flowing Retail采用了多种通信机制和工作流引擎:

  1. Apache Kafka 作为事件总线:实现服务间的事件通信,提供高可扩展性和低延迟。
  2. REST 通信:展示如何在服务之间进行状态ful的恢复模式,例如利用工作流引擎实现状态ful重试。
  3. Zeebe 工作流经纪人:用于分布式工作的管理和分配。
  4. Camunda 8 (Zeebe) 作为工作流引擎:处理长运行的服务交互,持久化并控制这些交互。

此外,项目支持Java语言编写,使得其对广泛的开发者群体友好。

应用场景

Flowing Retail可广泛应用于各种需要高效订单处理和协调的场景,比如电子商务平台、物流管理、供应链优化等。其架构设计可以灵活适应不同规模的企业,无论是初创公司还是大型企业,都能从中获益。

  • 对于小型企业,Flowing Retail提供了一套轻量级的解决方案,易于部署和维护。
  • 对于大型企业,其微服务架构则能够支撑复杂业务逻辑,保证系统的稳定性和可扩展性。

项目特点

  1. 模块化设计:每个服务都有明确的职责边界,易于开发和维护。
  2. 事件驱动:通过Kafka或REST实现异步通信,提高系统响应速度。
  3. 工作流内置于服务:每个服务可以根据自身需求选择合适的工作流引擎,保持团队自治。
  4. 灵活性:多种实现方式和编程语言供选择,满足不同需求和偏好。
  5. 理论与实践相结合:项目结合《Practical Process Automation》一书中的概念,深入浅出地解释了事件、流程和长运行服务的自动化管理。

Flowing Retail不仅是一个代码库,更是一个学习资源,它将带领你进入微服务和事件驱动的世界,帮你提升在现代分布式系统中的设计和实施能力。不论你是初学者还是经验丰富的开发者,这个项目都将为你带来独特的启发。现在就加入Flowing Retail,开启你的零售订单自动化之旅吧!

flowing-retailSample application demonstrating an order fulfillment system decomposed into multiple independant components (e.g. microservices). Showing concrete implementation alternatives using e.g. Java, Spring Boot, Apache Kafka, Camunda, Zeebe, ...项目地址:https://gitcode.com/gh_mirrors/fl/flowing-retail

安卓期末大作业—Android图书管理应用源代码(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—And
本文以电动汽车销售策略为研究对象,综合运用层次分析法、决策树、皮尔逊相关性分析、BP神经网络及粒子群优化等多种方法,深入探讨了影响目标客户购买电动汽车的因素及相应的销售策略。研究结果显示,客户对合资品牌电动汽车的满意度为78.0887,对自主品牌的满意度为77.7654,对新势力品牌的满意度为77.0078。此外,研究还发现电池性能、经济性、城市居住年限、居住区域、工作单位、职务、家庭年收入、个人年收入、家庭可支配收入、房贷占比、车贷占比等因素对电动汽车销量存在显著影响。通过BP神经网络对目标客户的购买意愿进行预测,其预测数据拟合程度超过80%,且真实情况高度接近。基于研究结果,本文为销售部门提出了提高销量的建议,包括精准定位尚未购买电动汽车的目标客户群体,制定并实施更具针对性的销售策略,在服务难度提升不超过5%的前提下,选择实施最具可行性和针对性的销售方案。 在研究过程中,层次分析法被用于对目标客户购买电动汽车的影响因素进行系统分析评价;决策树模型则用于对缺失数据进行预测填充,以确保数据的完整性和准确性;BP神经网络用于预测目标客户的购买意愿,并对其预测效果进行评估;粒子群优化算法对BP神经网络模型进行优化,有效提升了模型的稳定性和预测能力;皮尔逊相关性分析用于探究不同因素购买意愿之间的相关性。通过这些方法的综合运用,本文不仅揭示了影响电动汽车销量的关键因素,还为销售策略的优化提供了科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劳治亮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值