开源项目推荐:Kanji Data

开源项目推荐:Kanji Data

kanji-data A JSON kanji dataset with updated JLPT levels and WaniKani information kanji-data 项目地址: https://gitcode.com/gh_mirrors/ka/kanji-data

1. 项目基础介绍

Kanji Data 是一个开源项目,旨在为日语学习者提供一个方便的JSON格式汉字数据集。该数据集包含了大量与汉字相关的信息,如汉字的笔画数、年级、频率、JLPT等级、WaniKani信息等。项目以Python为主要编程语言,通过脚本提取和处理数据,确保了数据的质量和准确性。

2. 项目核心功能

  • 数据集整合:Kanji Data 将KANJIDIC数据集转换为JSON格式,并整合了更新的JLPT等级和WaniKani内容。
  • 汉字信息丰富:每个汉字条目都包含详细的读音(包括音读和训读)、意义、笔画数、JLPT等级、WaniKani等级等信息。
  • 易于使用:JSON格式的数据便于开发者或学习者快速检索和使用。
  • 扩展性:项目提供Python脚本,用户可以根据自己的需求提取或组织数据。

3. 项目最近更新的功能

  • 数据更新:项目最近更新了汉字数据集,包含了最新的JLPT等级和WaniKani信息,使得数据更加准确和全面。
  • 错误修复:开发者对数据提取和处理脚本进行了优化,减少了潜在的错误,提高了数据质量。
  • 性能优化:对脚本进行了性能优化,提高了数据处理的效率。

通过这些更新,Kanji Data 项目为日语学习者提供了一个更加可靠和实用的学习资源。

kanji-data A JSON kanji dataset with updated JLPT levels and WaniKani information kanji-data 项目地址: https://gitcode.com/gh_mirrors/ka/kanji-data

内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

劳治亮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值