探索艺术之美:LineDistiller——您的动漫与插画深度学习助手
简介
LineDistiller是一款高效且易于使用的开源项目,它专为2D动漫、漫画和插画设计,提供了基于数据驱动的线条提取器以及用于创建自定义数据集的全套工具。无论您是深度学习爱好者还是艺术家,想要启动自己的图像处理模型,LineDistiller都是一个值得信赖的起点。
技术分析
LineDistiller的核心是一个经过优化的神经网络架构,借鉴了[Deep Extraction of Manga Structural Lines][1]的工作,并对[sketchKeras][2]的思路进行了改进。原有的瓶颈残差块被应用于模型之中,以实现更佳的性能和较小的模型大小。此外,该项目还对比测试了不同的网络结构,包括原始网络和U-net样式的编码解码器,结果显示第一种模型在平衡效果和模型复杂度方面更为出色。
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
原始图像 | 边缘检测 | 线条提取 |
应用场景
LineDistiller不仅可以帮助您从原始图片中提取出高质素的线条,还可以进一步生成多种有用的数据形式。比如,您可以利用这些数据进行颜色线条、边界框、多边形分割、遮罩分割、填充区域分割、色彩平涂分解以及区域调色板等任务的研究。这些数据适用于颜色填充、局部色彩化、阴影线绘制等各种创意深度学习应用。
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
原始图像 | 线条提取 | 多边形分割 | 遮罩分割 |
填充区域 | 色彩平涂分解 | 色彩调色板 | 阴影线条 |
项目特点
- 易用性:提供详尽的说明文档和代码示例,让即使没有经验的初学者也能快速上手。
- 灵活性:支持Keras和PyTorch两种主流深度学习框架,适应不同的开发环境。
- 全面性:从数据准备到模型训练,再到应用开发,一应俱全。
- 可扩展性:工具集允许用户进行各种创新实验,如线条质量改善、风格化转换等。
- 强大的社区支持:有持续更新的模型库可供下载,以及活跃的开发者社区。
开始使用
- 使用Git克隆项目到本地,注意PyTorch版本应在
pytorch
分支下。git clone https://github.com/hepesu/LineDistiller.git
- 安装必要的依赖库,如Keras2(TensorFlow1后端)、PyTorch 1.5、OpenCV3以及colorgram.py。
- 将原始图像放入
input
目录,预测结果将保存在output
目录。
提取线条
- 下载预训练模型,并将其重命名为
model.h5
(Keras)或model.pth
(PyTorch),放在代码同一目录下。 - 运行
predict.py
进行预测。如果内存有限,可选择运行predict_block.py
以分块处理图像。
创建自定义数据集
- 使用FFmpeg或其他工具从视频中提取帧,并放到
input
目录下。 - 执行
predict_block.py
,设置相关参数以进行批量处理。 - 运行
dataset_utils.py
来创建您需要的数据子集。 - 清理数据并开始训练新的模型!
探索更多可能
从动漫人物识别到背景去除,再到子弹屏抗干扰,LineDistiller不仅限于线条提取。您可以结合这些数据集,利用如U-net或Pix2pix之类的模型进行色彩填充等研究。
引用
如果您觉得LineDistiller对您的研究有所帮助,请引用:
@misc{linedistiller,
author = {Project HAT},
title = {LineDistiller},
url = {https://github.com/hepesu/LineDistiller},
}
示例作品
在社交媒体上查看一些使用LineDistiller产生的精彩成果:
源自Project HAT,由Hepesu倾情奉献,带着爱意为您打造。
LineDistiller
[English] [中文]