HunyuanVideo-I2V 使用教程

HunyuanVideo-I2V 使用教程

HunyuanVideo-I2V HunyuanVideo-I2V: A Customizable Image-to-Video Model based on HunyuanVideo HunyuanVideo-I2V 项目地址: https://gitcode.com/gh_mirrors/hu/HunyuanVideo-I2V

1. 项目目录结构及介绍

HunyuanVideo-I2V 的目录结构如下:

HunyuanVideo-I2V/
├── assets/                     # 存储项目相关资源
├── ckpts/                      # 存储预训练模型和训练结果
├── hyvideo/                    # HunyuanVideo 相关代码
├── scripts/                    # 脚本文件,包括训练和推理等
├── utils/                      # 工具类代码
├── .gitignore                  # git 忽略文件
├── LICENSE.txt                 # 项目许可证
├── Notice                      # 项目通知
├── README.md                   # 项目说明文件
├── README_zh.md                # 项目中文说明文件
├── requirements.txt            # 项目依赖文件
├── sample_image2video.py        # 图像转视频示例脚本
└── train_image2video_lora.py   # LoRA 训练脚本
  • assets/: 存储项目所需的各种资源文件,如示例图片、视频等。
  • ckpts/: 存储预训练模型权重、训练中间结果和最终结果。
  • hyvideo/: 包含 HunyuanVideo 相关的代码实现。
  • scripts/: 包含项目的启动脚本,如训练、推理等。
  • utils/: 包含项目所需的工具类代码。
  • .gitignore: 指定 git 忽略的文件和目录。
  • LICENSE.txt: 项目的开源许可证。
  • Notice: 项目相关通知。
  • README.mdREADME_zh.md: 分别是项目说明文件的英文和中文版本。
  • requirements.txt: 项目依赖列表。
  • sample_image2video.py: 图像转视频的示例脚本。
  • train_image2video_lora.py: LoRA 效果训练的脚本。

2. 项目的启动文件介绍

项目的启动文件主要位于 scripts/ 目录中。以下是一些重要的启动文件:

  • sample_image2video.py: 这是一个图像转视频的示例脚本,可以通过传入一张图片和相应的配置来生成视频。

  • train_image2video_lora.py: 这是用于训练 LoRA 效果的脚本。LoRA 训练可以通过自定义的训练数据来生成特定的视频效果。

3. 项目的配置文件介绍

项目的配置文件主要包括以下部分:

  • requirements.txt: 该文件列出了项目依赖的 Python 包,可以通过以下命令安装:

    pip install -r requirements.txt
    
  • config.py: 该文件包含了项目的全局配置,如模型参数、数据路径、训练参数等。用户可以根据自己的需求进行修改。

注意:具体配置文件的详细内容和修改方式,请参考项目官方文档和相关脚本注释。

HunyuanVideo-I2V HunyuanVideo-I2V: A Customizable Image-to-Video Model based on HunyuanVideo HunyuanVideo-I2V 项目地址: https://gitcode.com/gh_mirrors/hu/HunyuanVideo-I2V

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

### FramePack 模型下载及本地部署教程 #### 准备工作 在开始之前,需确认已安装 Python 和必要的开发工具链。推荐使用虚拟环境管理器(如 `venv` 或 `conda`),以便隔离依赖项。 #### 安装 FramePack 项目 访问 FramePack 的官方仓库地址[^1],克隆该项目至本地: ```bash git clone https://gitcode.com/gh_mirrors/fr/FramePack.git cd FramePack ``` 创建并激活虚拟环境(可选): ```bash python -m venv env source env/bin/activate # Linux/MacOS .\env\Scripts\activate # Windows ``` 安装所需的 Python 库: ```bash pip install -r requirements.txt ``` #### 下载预训练模型 FramePack 使用 Hugging Face Hub 提供的模型存储服务。以下是具体命令用于下载所需模型: 1. **HunyuanVideo 社区模型** ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="hunyuanvideo-community/HunyuanVideo", local_dir="./models/hunyuan_video") ``` 2. **Flux Redux BFL 模型** ```python snapshot_download(repo_id="lllyasviel/flux_redux_bfl", local_dir="./models/flux_redux_bfl") ``` 3. **FramePack I2V HY 模型** ```python snapshot_download(repo_id="lllyasviel/FramePackI2V_HY", local_dir="./models/framepack_i2v_hy") ``` 运行以上脚本后,模型文件会被保存到指定目录下(默认为当前路径下的 `./models` 文件夹)。如果需要更改目标位置,请调整 `local_dir` 参数。 #### 配置本地环境 完成模型下载后,按照 FramePack 文档中的说明配置环境变量和参数设置。通常情况下,需要编辑项目的配置文件(如 `config.yaml` 或其他 JSON/YAML 格式的配置文件),指明模型路径以及硬件加速选项(GPU/CPU)。 对于 GPU 用户,建议验证 PyTorch 是否能够检测到可用设备: ```python import torch print(torch.cuda.is_available()) # 输出 True 表示支持 CUDA 加速 ``` #### 启动应用 启动 FramePack 工具前,确保所有依赖均已正确安装且模型成功加载。执行以下命令以启动程序: ```bash python main.py --model_path ./models/ ``` 更多高级功能可以通过传递额外参数实现,详情参见文档。 --- ### 注意事项 - 如果遇到显卡驱动版本不匹配或其他技术难题,可以参考 ComfyUI 的安装指南[^2]获取通用解决方法。 - 对于低配机器用户,可能需要降低分辨率或帧率来平衡性能需求[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尚舰舸Elsie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值