HunyuanVideo-I2V 使用教程
1. 项目目录结构及介绍
HunyuanVideo-I2V 的目录结构如下:
HunyuanVideo-I2V/
├── assets/ # 存储项目相关资源
├── ckpts/ # 存储预训练模型和训练结果
├── hyvideo/ # HunyuanVideo 相关代码
├── scripts/ # 脚本文件,包括训练和推理等
├── utils/ # 工具类代码
├── .gitignore # git 忽略文件
├── LICENSE.txt # 项目许可证
├── Notice # 项目通知
├── README.md # 项目说明文件
├── README_zh.md # 项目中文说明文件
├── requirements.txt # 项目依赖文件
├── sample_image2video.py # 图像转视频示例脚本
└── train_image2video_lora.py # LoRA 训练脚本
assets/
: 存储项目所需的各种资源文件,如示例图片、视频等。ckpts/
: 存储预训练模型权重、训练中间结果和最终结果。hyvideo/
: 包含 HunyuanVideo 相关的代码实现。scripts/
: 包含项目的启动脚本,如训练、推理等。utils/
: 包含项目所需的工具类代码。.gitignore
: 指定 git 忽略的文件和目录。LICENSE.txt
: 项目的开源许可证。Notice
: 项目相关通知。README.md
和README_zh.md
: 分别是项目说明文件的英文和中文版本。requirements.txt
: 项目依赖列表。sample_image2video.py
: 图像转视频的示例脚本。train_image2video_lora.py
: LoRA 效果训练的脚本。
2. 项目的启动文件介绍
项目的启动文件主要位于 scripts/
目录中。以下是一些重要的启动文件:
-
sample_image2video.py
: 这是一个图像转视频的示例脚本,可以通过传入一张图片和相应的配置来生成视频。 -
train_image2video_lora.py
: 这是用于训练 LoRA 效果的脚本。LoRA 训练可以通过自定义的训练数据来生成特定的视频效果。
3. 项目的配置文件介绍
项目的配置文件主要包括以下部分:
-
requirements.txt
: 该文件列出了项目依赖的 Python 包,可以通过以下命令安装:pip install -r requirements.txt
-
config.py
: 该文件包含了项目的全局配置,如模型参数、数据路径、训练参数等。用户可以根据自己的需求进行修改。
注意:具体配置文件的详细内容和修改方式,请参考项目官方文档和相关脚本注释。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考