- 博客(1062)
- 收藏
- 关注
原创 基于MindSpore-RNN实现情况分类
摘要:本文介绍了基于RNN的情感分类模型实现过程。使用MindSpore框架,结合IMDB影评数据集和GloVe预训练词向量,构建了一个包含Embedding层、LSTM层和全连接层的神经网络。文章详细阐述了数据预处理、模型构建、训练评估等关键步骤,并展示了模型在测试集上的评估结果,准确预测了输入文本的情感极性(Positive/Negative)。实验结果表明,该模型能够有效完成情感分类任务,为自然语言处理中的情感分析提供了实践参考。
2025-05-30 10:44:12
547
原创 MindSpore 常用视觉变换类总结表
摘要:MindSpore提供了两种图像变换方式:类变换(mindspore.dataset.vision)和函数式变换(transforms)。常用变换包括Resize(缩放)、CenterCrop(中心裁剪)、RandomCrop(随机裁剪)、Decode(解码)、Normalize(标准化)等。针对不同任务有特定组合建议:ViT在ImageNet上建议使用RandomCropDecodeResize+RandomHorizontalFlip+Normalize+HWC2CHW;ResNet在CIFAR-
2025-05-30 10:24:25
141
原创 使用模型对曝光不足的输入图片进行HDR效果增强
本样例展示了如何使用模型对曝光不足的PNG图像进行HDR效果增强。首先,通过下载并转换模型文件,生成适用于昇腾AI处理器的OM模型。接着,使用Python脚本实现图像预处理、模型推理和后处理功能。预处理包括图像归一化、缩放和颜色转换;推理通过AclLiteModel.execute接口执行;后处理则涉及形状变换、缩放和颜色转换,最终保存增强后的图像。样例还提供了资源初始化和释放的步骤,确保系统资源的正确管理。运行样例后,用户可查看输入图像和增强后图像的对比,增强后的图像保存在指定目录中。整个过程展示了从模型
2025-05-23 14:37:13
486
原创 第九届华为ICT大赛全球总决赛火热开赛中 昇思MindSpore开发者蓄势待发
第九届华为ICT大赛全球总决赛将于2025年5月20日至24日在中国深圳举行,汇聚来自80多个国家和地区的高校代表队。本届大赛以“联接、荣耀、未来”为主题,吸引了全球2000多所高校的21万名师生参与,成为ICT领域最具影响力的赛事之一。中国区共有9支昇思MindSpore队伍晋级创新赛总决赛,占中国区队伍的56%,海外则有8支队伍晋级,占海外参赛作品的33%。实践赛中,10支队伍进入昇腾AI赛道总决赛,进行基于昇思MindSpore和香橙派AIpro开发板的实践考核。华为通过ICT学院及竞赛项目,致力于培
2025-05-23 14:28:34
500
原创 基于MindSpore框架的LSTM+CRF 实现序列标注
序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。
2025-05-23 14:25:32
692
原创 基于MindSpore框架的SSD网络目标检测
SSD 是单阶段的目标检测算法,通过卷积神经网络进行特征提取,取不同的特征层进行检测输出,所以 SSD 是一种多尺度的检测方法。在需要检测的特征层,直接使用一个 3 \times3 卷积,进行通道的变换。SSD 采用了 anchor 的策略,预设不同长宽比例的 anchor,每一个输出特征层基于 anchor 预测多个检测框(4 或者 6)。采用了多尺度检测方法,浅层用于检测小目标,深层用于检测大目标。
2025-05-23 14:19:51
668
原创 MindSpore 常用视觉变换类总结表
Mindspore中的图像变换主要分为两类:基于类的变换和基于函数的变换。基于类的变换通过创建变换类并调用其实例来实现,而基于函数的变换则直接调用相关函数。常见的变换包括调整图像大小(Resize)、中心裁剪(CenterCrop)、随机裁剪(RandomCrop)、随机缩放裁剪(RandomResizedCrop)、解码(Decode)、标准化(Normalize)、格式转换(HWC2CHW)、张量转换(ToTensor)、随机水平/垂直翻转(RandomHorizontalFlip/RandomVert
2025-05-23 14:14:26
121
原创 AI开发者集结令!Call for Demo第二期来袭,万元笔记本大奖等你拿!
昇思MindSpore开源社区携手黄大年茶思屋、OpenI启智社区及OpenDataLab,发起全球开发者挑战赛,旨在基于昇思AI框架进行模型微调,开发创新、实用且可扩展的AI应用。比赛聚焦智慧医疗、智能交通及元宇宙等前沿领域,鼓励技术突破与产业应用结合。赛程包括报名与选题报告提交、模型微调与应用开发,以及Demo路演与答辩,最终将评选出一、二、三等奖及参与奖,奖品包括华为高端电子产品。此次活动旨在推动AI技术深度应用,助力开发者实现技术与社会价值的双重突破。
2025-05-16 11:06:39
179
原创 昇思MindSpore高校教师赋能活动 | 华为ICT学院基础软件师资培训(哈尔滨工业大学站)成功举行
哈尔滨工业大学与华为技术有限公司联合举办的人工智能课程师资培训于2025年4月26日至27日在哈尔滨成功举行。此次培训由黑龙江省计算机学会教育工委会和哈尔滨工业大学计算机科学与技术国家级实验教学示范中心支持,吸引了全国20余所院校的70多名教师参与。培训内容涵盖AI技术的全貌,从早期对话系统到当前的大模型DeepSeek,以及深度学习技术模块,如卷积网络、递归网络和GAN等。实验模块设计了六个前沿案例,涉及文化遗产保护、工业智能质检、情感计算等领域,旨在提升教师们的AI技术应用和创新能力。培训得到了参培教师
2025-05-16 11:05:28
326
原创 基于昇思MindSpore,中国电信发布TeleChat系列4个模型并开源
中国电信于5月12日开源了TeleChat系列模型,包括TeleChat-T1-35B、TeleChat-T1-115B、TeleChat2.5-35B和TeleChat2.5-115B,这些模型专注于复杂推理和通用问答任务。TeleChat系列基于昇思MindSpore+vLLM技术,已在魔乐社区上线,供开发者下载体验。T1模型通过课程学习和强化学习策略,提升了复杂推理能力;TeleChat2.5模型则在理科、通用问答等任务上表现优异。开发者可通过提供的链接下载模型,并按照指南进行推理测试。中国电信此举旨
2025-05-16 10:57:45
1074
原创 社区月报 | 昇思MindSpore 2.6版本重磅发布、Qwen3、GLM4等主流模型0Day同步首发!
2025年4月,昇思MindSpore开源社区在技术创新和社区运作方面取得了显著进展。社区成功发布了Qwen3和GLM-4-0414系列模型,支持一键部署和高效推理,进一步丰富了开源模型生态。上海交通大学与MindSpore及openEuler社区合作,实现了DeepSeek全栈开源单机推理部署,提升了推理性能。昇思开发者大会上,MindSpore2.6版本正式发布,支持DeepSeekV3/R1MoE模型训练推理全流程,并推出强化学习套件。中国科学技术大学团队开发的ChemAgents多智能体系统,结合L
2025-05-16 10:55:40
1091
原创 重生之大腿带我征服MindSpore(三):勇者的宿命,与并行女神的浪漫共舞
本期《重生之大腿带我征服 MindSpore》栏目聚焦于大模型分布式训练中的并行技术,详细介绍了数据并行、张量并行和流水线并行三种常见的分布式训练方式。数据并行通过在数据维度进行切分,利用多个设备同时处理不同批次的数据,从而加速训练过程。张量并行和流水线并行则属于模型并行,分别对层内和层间的张量进行切分,以优化计算资源的利用。此外,还探讨了MindSpore中的ZERO优化器技术,通过切分优化器状态、梯度和参数,显著减少内存占用。最后,栏目通过实际案例分析了梯度计算、数据处理和损失计算等关键步骤,帮助观众深
2025-05-16 10:52:28
451
原创 扩散模型系列——DDPM
《Denoising Diffusion Probabilistic Models (DDPM)》论文提出了一种基于扩散过程的生成模型,通过逐步去除图像中的噪声来生成高质量样本。其核心思想是将复杂数据分布转换为高斯噪声分布,并利用神经网络学习从噪声中恢复原始数据的映射关系。DDPM采用双向马尔可夫链结构,正向过程固定,反向过程通过神经网络参数化,并使用U-Net架构捕捉图像细节。模型通过预测噪声间接恢复数据,避免了显式估计复杂分布。训练过程中,通过优化变分下界简化计算,最终实现对复杂数据分布的建模。论文还详
2025-05-09 10:31:34
622
原创 MindSpore机器人开发系列1:深入探索基于世界模型的机器人操控新方法
本系列文章介绍了MindSpore在机器人学领域的前沿研究,特别是如何利用MindSpore训练机器人,提升其理解和行动能力。重点介绍了一篇发表在arxiv上的论文(编号:2306.11335),该论文提出了名为Surfer的新框架,通过世界模型让机器人能够预测动作和场景变化,从而做出更明智的决策。Surfer框架的核心在于解耦动作预测和场景预测,使机器人具备预见性,提升其在新指令和新场景中的泛化能力。此外,论文还介绍了基于MuJoCo的模拟器和SeaWave基准测试,用于验证和评估模型。实验结果显示,Su
2025-05-09 10:30:06
693
原创 AI开发者集结令!Call for Demo第二期来袭,万元笔记本大奖等你拿!
昇思MindSpore开源社区携手黄大年茶思屋、OpenI启智社区及OpenDataLab,发起全球开发者挑战赛,邀请基于昇思AI框架进行模型微调,开发创新、实用且可扩展的AI应用。赛事旨在推动AI技术在产业中的深入应用,助力开发者实现技术与社会价值的双重突破。参赛者需围绕昇思MindSpore AI框架和Ascend进行创意开发,涵盖智慧医疗、智能交通及元宇宙等场景。赛事分为报名与选题报告提交、模型微调与应用开发、Demo路演与答辩三个阶段,优胜者将获得华为MateBook X Pro、Mate70等丰厚
2025-05-09 10:24:40
221
原创 零样本声音克隆!基于昇腾+MindSpore玩转Spark-TTS !
全局tokenizer 的编码器使用ECAPA-TDNN架构,并通过交叉注意力机制提取固定长度的全局token 序列,使用FSQ进行量化,以避免训练崩溃的风险。MindSpore团队现已完成对Spark-TTS 的适配,并将其开源至MindSpore ONE仓库,本文将要给大家详细介绍,如何基于昇思MindSpore和单机Atlas 800T A2,完整实现Spark-TTS 定制化语音合成的部署流程。如果想要自定义语音生成的内容,只需要修改--text,输入你想要生成的文字即可,支持多种语言文字输入。
2025-05-09 10:23:17
850
原创 海量文档无处寻觅?一个入口解决MindSpore相关文档查询问题
将文档放置在目录下(支持Markdown、PDF、TXT等格式)重启服务以应用新的知识库通过这种方式,用户可以根据自己的需求构建专属知识库,提升问答系统的针对性和准确性。[1]
2025-04-25 14:05:30
757
原创 昇腾910上算子溢出问题分析
由于昇腾上部分算子不支持fp32(如 Conv,Pooling),或部分算子虽然支持fp32但性能极差,不得不切换成fp16(如MatMul),导致其必须走fp16,这增大了训练过程中算子溢出的风险,影响网络最终收敛的精度,这里给出算子溢出分析方法。|-- execution_order # 网络中算子的执行顺序(如果有多个图,则产生多个文件)`-- graphs # 网络中算子的图结构(如果有多个图,则产生多个文件):设置为3,开启全部溢出检测。:设置为0,检测到所有算子。
2025-04-25 14:01:29
791
原创 MindSpore混合精度训练源码大揭秘
这就是混合精度(Mixed Precision)的核心思想:让计算在低精度(如float16)下飞驰,在关键环节(如梯度累积)切回高精度(float32)保命。MindSpore的混合精度模块就像一位精明的“摸鱼导师”,它通过白名单(该摸鱼的地方)和黑名单(必须正经的地方),教会神经网络何时该“偷懒”,何时该严谨。如果检测到CPU环境(`context.get_context("device_target") == "CPU"`),会强制关闭某些优化,毕竟“小马拉大车”容易翻车。
2025-04-25 13:57:26
447
原创 直播 | 带你看如何在任意几何下高效求解物理方程
目前现有的大多数神经模型依赖于丰富的训练数据,外推和泛化能力有限,并且在复杂的条件下难以产生精确或可靠的物理预测。为此,我们提出了一种新的图学习方法,即物理编码的消息传递图网络(PhyMPGN),给定小的训练数据集,在不规则网格上对时空PDE系统建模。我们将带大家了解物理编码的消息传递图网络,看它如何利用较小数据,更准确地模拟复杂系统的动态变化。本期我们特邀 中国人民大学 曾博成老师 为大家讲解《用于时空PDE系统的物理编码消息传递图神经网络》。
2025-04-25 13:55:08
146
原创 基于MindSpore香橙派AIpro实现垃圾回收AI识别方案四:SOWT分析与总结
Stable Diffusion 可以通过生成多样化、高质量的图像、修复损坏的图像、提高图像的分辨率和应用特定风格到图像上等方式,辅助视觉创意的实现,它为视觉艺术家、设计师等提供更多的创作工具和素材,促进视觉艺术领域的创新和发展。昇思MindSpore充分发挥原生支持大模型训练的能力,降低大模型创新开发门槛,为了让AI大模型更好地普惠大众,昇思社区打造了首个基于自主创新AI算力和框架、服务全球开发者的一站式大模型平台,将大模型的能力开放给开发者。(1). 数据获取:高质量的数据是训练AI模型的关键。
2025-04-25 13:54:14
729
原创 奋楫逐浪,迎风远航——昇思开发者大会成功举办,MindSpore 2.6版本重磅发布
近段时间,技术上,多模态、长序列、思维链、强化学习等技术密集爆发,DeepSeek让开源AI事业再创高峰,面对这些技术热点,昇思通过深厚的储备与架构演进,持续支撑着开源开发者的创新。此外,昇思持续投入AI+科学计算,发布流体、气象、化学套件新版本,联合行业用户、科研机构、学术专家共同加速科研创新,推动科技进步。
2025-04-18 17:03:51
271
原创 同步首发!智谱开源GLM-4-0414全部6个模型并上线昇思、魔乐开源社区
执行以下 Python 脚本从魔乐社区下载昇思 MindSpore 版本的 GLM-Z1-9B-0414 文件至指定路径 /home/work/GLM-Z1-9B-0414。通过在 AIME 24/25、LiveCodeBench、GPQA 等基准测试中的评估,GLM-Z1-32B-0414 展现了较强的数理推理能力,能够支持解决更广泛复杂任务。本文档提供的模型代码、权重文件和部署镜像,当前仅限于基于昇思MindSpore AI框架体验 GLM-Z1-9B-0414 的部署效果,不支持生产环境部署。
2025-04-18 17:01:44
884
原创 贵州AI开发者大会来啦!带你玩转昇腾CANN,解锁大模型开发新姿势
CANN(Compute Architecture for Neural Networks)是昇腾针对AI场景推出的异构计算架构,是提升昇腾AI处理器计算效率的关键平台。同时针对多样化应用场景,CANN 提供多层次编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。作为贵州首个聚焦AI技术开发与产业落地的专业盛会,本次大会特邀开源中国CTO 红薯;· 全流程突破:RLHF场景下,CANN如何实现训练-推理一体化加速。· 推理实践:vLLM+CANN实现低延迟、高吞吐推理的实战技巧。
2025-04-18 17:00:09
215
原创 一键部署,开箱即用!MindSpore加速DeepSeek大模型推理研讨成功举办
本次大会由昇思MindSpore开源社区主办,聚焦AI框架技术创新与开源开发者生态共建,展示其端到端全流程支持DeepSeek等MoE大模型训练、微调、强化学习与推理部署的技术,以及在科学智能、开发易用性等领域和方向的技术创新与成果。其中,《MindSpore加速DeepSeek大模型推理研讨》专题围绕MindSpore面向DeepSeek-V3/R1等大模型的推理加速技术,开发者们对大模型推理技术演进趋势与应用创新方向展开深入的讨论,现场氛围热烈。
2025-04-18 16:58:54
371
原创 持续完善开发者体验!MindSpore开发体验与易用性提升专题研讨成果举办
作为本次大会重要的一环,SIG Gathering吸引了众多开发者的关注。其中,《MindSpore开发体验与易用性提升》专题围绕提升易用性和开发者体验的角度,开发者们对大模型时代AI框架在提升模型开发与调试调优效率方面的发展趋势、挑战和应对展开深入的讨论,现场气氛热烈。昇思MindSpore开发者李玲瑶、许凡瑾为大家分享了面对数字信号处理应用开发的挑战,基于MindSpore打造融合AI与信号处理的开发平台,详细介绍了做出的生态适配及生态扩展,同时提出了开发中遇到的算子和文档问题与优化期望。
2025-04-18 16:57:47
251
原创 科学智能新范式!MindSpore加速AI4Science创新与落地专题研讨成功举办
昇思MindSpore技术专家周俊园分享了量子计算这个新兴领域目前在硬件、软件和算法三个方面的整体发展情况,同时介绍了量子计算套件MindSpore Quantum 0.10.0目前在功能、模拟器性能和开源生态建设等方面取得的进展,以及接下来继续深耕的方向,并展示了新版套件在处理量子化学模拟、量子组合优化等场景上的能力。本次会议上,开发者们围绕昇思MindSpore贡献了大量宝贵想法和建议,昇思MindSpore开源社区的繁荣发展离不开每一位SIG组成员的贡献,从而实现“百花齐放”。
2025-04-18 16:56:43
412
原创 上海交通大学联合MindSpore与openEuler社区,实现DeepSeek全栈开源单机推理部署
同时,采用逐块量化策略,降低量化校准耗时和显存占用,在完成一批参数的量化完后,使用逆Hessian矩阵信息对后一批参数的权重进行补偿。双方研发人员然后使用昇思MindSpore金箍棒套件,对DeepSeek-R1和DeepSeek-V3-0324 1274GB的BFloat16浮点格式权重文件,进行了GPTQ权重量化,经历约6小时的量化寻优,获得了体积仅337GB的Int4格式权重文件,可在单台Atlas 800T A2服务器(64GB)上进行服务部署,192 Batch总吞吐率420token/s。
2025-04-18 16:55:42
708
原创 昇思开发者荣获一等奖“半壁江山”!第九届华为ICT大赛创新赛中国总决赛圆满落幕
该系统通过创新融合心电、皮电及六轴惯性传感器,实现驾驶员常规握持状态下的体征及行为数据无感实时采集,结合华为MindSpore框架与ModelArts全流程AI平台,构建驾驶员状态监测模型,精准识别疲劳驾驶、情绪激动、心血管风险三类高危状态,并首创“体征感知-反馈预警-及时干预”的主动安全闭环体系,实现道路恶性事件减少,守护公共交通安全。在创新赛,昇思MindSpore开发者脱颖而出,占一等奖获奖队伍的50%,他们将晋级5月在深圳举办的全球总决赛,与来自世界其他国家的队伍展开巅峰对决。
2025-04-18 16:54:49
386
原创 翔迅科技基于昇腾和昇思MindSpore打造翔迅大模型DeepSeek智能办公版,助力行业办公场景AI赋能
经验不够丰富的维修人员常常需要通过查询相关知识文档及历史维修案例,从中获取相关指导,由于文档和案例数量庞大,人工查找耗时耗力,部署翔迅大模型后,可直接通过文档名称、内容、关键字快速检索到对应的文档,此外,还可直接通过对话问答方式获取相关知识和维修指导,不仅提高了维修人员的工作效率,同时也巩固了维修知识。翔迅科技计划与昇腾+昇思生态紧密合作,在西安昇腾的算力支持下,基于昇思MindSpore AI框架拓展模型在特定领域的技术边界,进一步巩固大模型在行业办公领域的技术优势,为行业注入新的活力与动能。
2025-04-11 16:48:15
582
原创 使能AI智能体算法性能倍增!昇思多维混合并行等技术助力小艺语音交互、AI修图体验升级
为进一步提升业务模型推理性能,针对AI生成式算法模型结构,昇思MindSpore通过构建自动图结构融合优化能力,将模型中Attention结构的小算子结合成昇腾硬件支持的PromptFlashAttention大算子、以及将算法中的GroupNorm算子与激活算子融合成GroupNormSilu大算子,出图效率提升20%。MindSpore联合业务深入优化部署方案,通过使能图编译缓存能力,业务在部署过程中直接使用编译缓存,部署加载时延从小时级优化到分钟级,极大方便业务服务化部署。
2025-04-11 16:46:22
294
原创 快速支持DeepSeek-V3-0324,昇思MindSpore+vLLM服务化部署开源版本上线
作为开源AI框架,MindSpore 以其卓越的性能优化、灵活的模型开发能力和高效的分布式训练能力,为大规模模型训推部署提供全流程开源支持。魔乐社区链接:https://modelers.cn/models/MindSpore-Lab/DeepSeek-V3-0324。近日,基于昇思 MindSpore AI 框架+vLLM的DeepSeek-V3-0324 模型完成适配并上线魔乐社区。环境准备:四台Atlas 800I A2 (64G),并配置好组网,四台设备的卡与卡之间能够互相ping通。
2025-04-11 16:45:09
259
原创 社区季报 | 新版本发布、开发者相约,MindSpore Developer Day 2025重磅来袭!
昇思MindSpore2025年一季度总结一、概述2025年第一季度,昇思MindSpore开源社区以技术创新为驱动,持续扩大生态影响力,在框架升级、开发者生态建设、行业应用落地等方面取得显著进展。昇思MindSpore开源社区将于4月12日在杭州举办MindSpore Developer Day 2025。本次会议将发布MindSpore 2.6.0全新版本,展示其端到端全流程支持DeepSeek等MoE大模型训练、微调、强化学习与推理部署的技术,以及在科学智能、开发易用性、与CANN协同提升计算效率等领
2025-04-11 16:42:11
816
原创 直播 | 一看就会!基于昇思MindSpore框架的模型逆向攻击复现全流程
4月13日(本周日)14点,昇思MindSpore Trusted AI SIG邀你来参加!本期我们将聚焦模型逆向共计复现与隐私保护,基于《Model Inversion Attacks Against Collaborative Inference》论文,深入探讨模型逆向攻击在协作深度学习系统中的应用与风险,就论文中提出的新技术进行介绍和演示,对rMLE、Inverse-Network和无需查询的影子模型重建方法,并展示这些技术在不同攻击场景下的有效性与通用性。
2025-04-11 16:41:00
711
原创 西安电子科技大学人工智能学院携手昇腾+昇思以千问QwQ-32B&DeepSeek等大模型为抓手,探索智慧教育,智慧科研新方式
西安电子科技大学坚持以教育信息化支撑引领教育现代化,利用现代信息技术推动学校环境构建、资源供给、教学模式、评价改革、培训体系、治理服务等方面创新发展,通过“新环境”“新资源”“新教学”“新评价”“新培训”“新治理”等“六新”建设,探索“人工智能+教育”的新模式、新技术、新方法,努力推动学校事业高质量发展。教育数字化是利用信息技术推动教育创新,促进教育结构重组、流程再造、程序重构,转换教育发展的动力结构,构建更高质量的教育体系的历史进程;以“六新”打造教育教学新生态 推动构建“人工智能+教育”标杆大学。
2025-03-29 16:11:44
750
原创 MindSpore Transformers支持DeepSeek-R1蒸馏全流程
target=https%3A%2F%2Fhuggingface.co%2FQwen%2FQwen2.5-Math-7B-Instruct)下载,并参考Qwen2.5(https://gitee.com/mindspore/mindformers/blob/dev/research/qwen2_5/qwen2_5.md#%E6%A8%A1%E5%9E%8B%E6%9D%83%E9%87%8D%E8%BD%AC%E6%8D%A2)权重转换。然后对生成的数据进行拒绝采样的后处理,筛选出回答正确的高质量数据。
2025-03-29 16:09:51
1035
原创 视频生成效果惊艳!昇思率先完成Open-Sora 2.0支持
Open-Sora 2.0是潞晨科技推出的全新开源SOTA视频生成模型,相比传统高性能视频生成模型大幅降低了训练成本。Open-Sora 2.0基于3D自编码器 、3D全注意力机制和MMDiT架构,结合高效的并行训练方案和高压缩比自编码器,显著提升训练效率和推理速度。仓库,本文将要给大家详细介绍,如何基于昇思MindSpore和单机Atlas 800T A2,完整实现Open-Sora 2.0视频生成流程。结合开源图像模型,基于图像生成视频,进一步提升生成效果和多样性。
2025-03-29 16:05:12
525
原创 三象智能基于昇腾及昇思MindSpore,以DeepSeek&QwQ-32B等为基础大模型打造智能工作流升级解决方案
例如,当用户询问“A站到B站的最快路线”时,系统不仅提供换乘方案,还会关联推荐沿线广告商家的优惠活动,日均处理咨询量提升至10万次,响应速度缩短至2秒内。在近期案例中,系统日均拦截风险广告超1.5万条,其中因舆情风险触发的拦截占比达25%。能够实现上述的效果,离不开昇腾与昇思MindSpore的保驾护航,昇腾AI硬件强大的算力以及昇思MindSpore AI框架对大模型性能及设备稳定性的支撑,并且同时支持vLLM 、MindIE等推理引擎,确保三象智能智能工作流高效且稳定运行。
2025-03-29 15:59:39
285
原创 MindSpore混合精度训练源码大揭秘
这就是混合精度(Mixed Precision)的核心思想:**让计算在低精度(如float16)下飞驰,在关键环节(如梯度累积)切回高精度(float32)保命**。MindSpore的混合精度模块就像一位精明的“摸鱼导师”,它通过白名单(该摸鱼的地方)和黑名单(必须正经的地方),教会神经网络何时该“偷懒”,何时该严谨。如果检测到CPU环境(`context.get_context("device_target") == "CPU"`),会强制关闭某些优化,毕竟“小马拉大车”容易翻车。
2025-03-29 15:58:03
703
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人