🚀【探索宇宙边界】使用强化学习回收火箭 —— Rocket-recycling 项目详解 🌠
去发现同类优质开源项目:https://gitcode.com/
在追寻SpaceX的脚步中,一位热爱航天的博士 Zhengxia Zou 创造了一个独特的开源项目:Rocket-recycling with Reinforcement Learning。通过简单的强化学习,这个项目试图模拟并解决一个极具挑战性的问题——火箭回收。
1、项目介绍 🚀
该项目旨在构建一个虚拟火箭,并利用强化学习训练它完成两项任务:悬停(hovering)和着陆(landing)。火箭模型简化为二维平面上的刚体,考虑了基本的气动阻力和可调节的推力方向控制。经过训练,这个简单的AI代理能够掌握类似Starship SN10的腹部翻转着陆动作。
2、项目技术分析 💡
- 环境设计:包括火箭的位置、速度、角度等状态信息,以及发动机的推力和喷嘴旋转角度的离散控制信号。
- 强化学习算法:采用基于策略的Actor-Critic算法,训练过程大约需20,000个训练周期。
- 奖励机制:根据火箭与目标点的距离和姿态给予奖励,着陆任务中还考虑了接触地面时的速度和角度。
3、应用场景 ⚙️
这个项目不仅是一个有趣的学术研究案例,也是开发航天模拟器和智能控制系统的实践平台。它可以用来:
- 教育:作为学习强化学习和航天动力学的实践工具。
- 研究:测试新的控制策略或优化现有算法。
4、项目特点 ✨
- 直观结果:训练过程可视化,可以看到火箭从不稳定到熟练执行任务的过程。
- 简单设置:尽管环境简单,但AI代理仍能学习到复杂的飞行操作。
- 灵活应用:可以调整任务和参数以适应不同的场景需求。
要体验这个项目,只需按照requirements.txt
安装依赖,运行example_train.py
进行训练,或者运行测试脚本来观察已训练好的代理执行任务。
结语 💫
Rocket-recycling 使用强化学习展示了火箭回收的潜力,是将人工智能应用于航空航天领域的一个创新尝试。无论你是对航天、机器学习还是软件工程感兴趣,这个项目都值得你一试。立即行动,一起探索星辰大海!
项目链接: https://github.com/jiupinjia/rocket-recycling
引用此项目:
@misc{zou2021rocket,
author = {Zhengxia Zou},
title = {Rocket-recycling with Reinforcement Learning},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/jiupinjia/rocket-recycling}}
}
去发现同类优质开源项目:https://gitcode.com/