Databricks MLOps Stacks 使用教程
mlops-stacks项目地址:https://gitcode.com/gh_mirrors/ml/mlops-stacks
1. 项目介绍
Databricks MLOps Stacks 是一个开源项目,旨在帮助数据科学家和运维工程师快速启动新的机器学习项目,并遵循生产环境的最佳实践。该项目提供了一个可定制的堆栈,用于在 Databricks 平台上进行模型开发、测试和部署。通过使用 Databricks MLOps Stacks,用户可以轻松地将数据科学项目从开发阶段过渡到生产阶段,同时保持高质量的 CI/CD 流程。
2. 项目快速启动
2.1 克隆项目仓库
首先,克隆 Databricks MLOps Stacks 的 GitHub 仓库到本地:
git clone https://github.com/databricks/mlops-stacks.git
cd mlops-stacks
2.2 配置环境
在项目根目录下,创建一个 .env
文件,并根据你的 Databricks 环境配置相关参数:
# .env 文件示例
DATABRICKS_HOST=https://<your-databricks-instance>
DATABRICKS_TOKEN=<your-databricks-token>
2.3 初始化项目
使用以下命令初始化项目:
databricks bundle init
2.4 运行项目
运行以下命令来启动项目:
databricks bundle exec
3. 应用案例和最佳实践
3.1 应用案例
Databricks MLOps Stacks 可以应用于各种机器学习项目,包括但不限于:
- 特征工程:使用 Databricks 的 Feature Store 进行特征管理和版本控制。
- 模型训练:通过 MLflow 进行模型训练和版本管理。
- 模型部署:使用 Databricks 的 Model Serving 进行模型部署和监控。
3.2 最佳实践
- 模块化设计:项目采用模块化设计,允许不同的 ML 团队独立工作,同时遵循软件工程最佳实践。
- CI/CD 集成:使用 GitHub Actions 或 Azure DevOps 进行持续集成和持续部署。
- 监控和日志:通过 Databricks 的 Lakehouse 监控工具进行数据和模型性能监控。
4. 典型生态项目
Databricks MLOps Stacks 与其他开源项目和工具紧密集成,形成了一个完整的机器学习生态系统:
- MLflow:用于模型管理和实验跟踪。
- Feature Store:用于特征管理和版本控制。
- Model Serving:用于模型部署和实时推理。
- Lakehouse Monitoring:用于数据和模型性能监控。
通过这些工具的集成,Databricks MLOps Stacks 提供了一个端到端的机器学习解决方案,帮助用户从数据准备到模型部署的全流程管理。
mlops-stacks项目地址:https://gitcode.com/gh_mirrors/ml/mlops-stacks
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考