Anno-Mage:半自动图像标注工具安装与使用指南

VirajMavani的半自动图像注释工具利用WebGL技术简化AI训练,通过预处理和初步标注减少手动工作。支持多类别、实时保存和跨平台协作,适用于AI研发、自动驾驶、零售电商和医疗影像等领域,提升效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Anno-Mage:半自动图像标注工具安装与使用指南

semi-auto-image-annotation-tool Anno-Mage: A Semi Automatic Image Annotation Tool which helps you in annotating images by suggesting you annotations for 80 object classes using a pre-trained model 项目地址: https://gitcode.com/gh_mirrors/se/semi-auto-image-annotation-tool


项目目录结构及介绍

本节概述semi-auto-image-annotation-tool项目的文件结构及其重要组成部分。

.
├── annotations             # 存放最终标注结果的CSV文件以及XML文件
│
├── contrib                 # 可能包含外部贡献或辅助脚本(在本实例中未提及具体内容)
│
├── config.py               # 主要配置文件,定义了一些通用设置
│
├── demo.gif                # 工具的演示动画
│
├── icon.gif                # 项目图标或示意图
│
├── main.py                 # 应用的主入口文件,负责运行程序
│
├── requirements.txt        # 必需的Python库依赖列表
│
├── tf_config.py            # 使用TensorFlow模型时的特定配置
│
├── README.md               # 项目说明文档,包含基本的使用说明和信息
│
├── CODE_OF_CONDUCT.md      # 社区行为准则
│
├── CONTRIBUTING.md         # 对于贡献者而言的指南
│
└── PULL_REQUEST_TEMPLATE.md # 提交Pull Request的模板

项目的启动文件介绍

main.py

这是应用程序的核心执行文件。通过运行这个Python脚本,你可以启动图像标注工具。它处理图像处理逻辑,加载配置,选择模型,并实现标注界面和功能。用户应首先安装所有必要的依赖项,然后直接执行此文件来启动应用。对于MSCOCO数据集,可以直接运行python main.py;而对于自定义数据集,则可能需要先调整配置文件中的标签信息。

项目的配置文件介绍

config.pytf_config.py

  • config.py:用于Keras模型的基础配置,确保正确地指向数据集路径、自定义标签等。如果你计划使用基于Keras的对象检测模型,这个文件将是你进行初步调整的地方。

  • tf_config.py:专门针对TensorFlow模型的配置。当你决定采用TensorFlow预训练模型时,这个文件至关重要,它帮助软件找到模型的位置并根据TensorFlow特定的需求调整配置。

为了适应不同需求和模型类型,开发者需要根据这两个配置文件来指定对象类别的列表、模型路径以及其他可能需要微调的参数。确保已经下载了相应预训练权重,并放置到指示的/snapshots/子目录下(分为Keras和TensorFlow模型对应的文件夹)。


通过遵循上述指南,开发者可以成功设置并运行Anno-Mage,一个高效的半自动图像标注工具,以提升图像数据标注的效率和准确性。

semi-auto-image-annotation-tool Anno-Mage: A Semi Automatic Image Annotation Tool which helps you in annotating images by suggesting you annotations for 80 object classes using a pre-trained model 项目地址: https://gitcode.com/gh_mirrors/se/semi-auto-image-annotation-tool

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颜殉瑶Nydia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值