Anno-Mage:半自动图像标注工具安装与使用指南
项目目录结构及介绍
本节概述semi-auto-image-annotation-tool
项目的文件结构及其重要组成部分。
.
├── annotations # 存放最终标注结果的CSV文件以及XML文件
│
├── contrib # 可能包含外部贡献或辅助脚本(在本实例中未提及具体内容)
│
├── config.py # 主要配置文件,定义了一些通用设置
│
├── demo.gif # 工具的演示动画
│
├── icon.gif # 项目图标或示意图
│
├── main.py # 应用的主入口文件,负责运行程序
│
├── requirements.txt # 必需的Python库依赖列表
│
├── tf_config.py # 使用TensorFlow模型时的特定配置
│
├── README.md # 项目说明文档,包含基本的使用说明和信息
│
├── CODE_OF_CONDUCT.md # 社区行为准则
│
├── CONTRIBUTING.md # 对于贡献者而言的指南
│
└── PULL_REQUEST_TEMPLATE.md # 提交Pull Request的模板
项目的启动文件介绍
main.py
这是应用程序的核心执行文件。通过运行这个Python脚本,你可以启动图像标注工具。它处理图像处理逻辑,加载配置,选择模型,并实现标注界面和功能。用户应首先安装所有必要的依赖项,然后直接执行此文件来启动应用。对于MSCOCO数据集,可以直接运行python main.py
;而对于自定义数据集,则可能需要先调整配置文件中的标签信息。
项目的配置文件介绍
config.py
和 tf_config.py
-
config.py:用于Keras模型的基础配置,确保正确地指向数据集路径、自定义标签等。如果你计划使用基于Keras的对象检测模型,这个文件将是你进行初步调整的地方。
-
tf_config.py:专门针对TensorFlow模型的配置。当你决定采用TensorFlow预训练模型时,这个文件至关重要,它帮助软件找到模型的位置并根据TensorFlow特定的需求调整配置。
为了适应不同需求和模型类型,开发者需要根据这两个配置文件来指定对象类别的列表、模型路径以及其他可能需要微调的参数。确保已经下载了相应预训练权重,并放置到指示的/snapshots/
子目录下(分为Keras和TensorFlow模型对应的文件夹)。
通过遵循上述指南,开发者可以成功设置并运行Anno-Mage,一个高效的半自动图像标注工具,以提升图像数据标注的效率和准确性。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考