评论回复机器人项目教程
reply-ai 基于大型语言模型的评论回复机器人。 项目地址: https://gitcode.com/gh_mirrors/re/reply-ai
1. 项目目录结构及介绍
本项目为一个基于大型语言模型的评论回复系统,包含服务端脚本与移动端工程文件。项目的目录结构如下:
reply-ai/
├───client/ # 移动端程序的 DevEco Studio 元服务工程项目
├───server/ # 服务端程序,包含生成回复的服务脚本和与移动端通信的数据服务脚本
│ ├───reply-server.py # 负责生成回复的服务脚本
│ └───data-server.py # 负责与移动端及目标网站通信的数据服务脚本
├───utils/ # 工具脚本目录
│ └───scripts/
├───.gitattributes
├───.gitignore
├───LICENSE # 项目许可文件
└───README.md # 项目说明文件
client/
目录包含移动端程序的代码,使用 DevEco Studio 进行开发。server/
目录包含服务端程序的代码,其中reply-server.py
用于生成回复,data-server.py
用于数据通信。utils/
目录包含工具脚本,如compress_code.py
用于代码压缩,方便与 AI 交流。
2. 项目的启动文件介绍
项目的启动涉及到两个主要的 Python 脚本文件,分别是 reply-server.py
和 data-server.py
。
-
reply-server.py
是服务端的核心脚本,用于生成评论的回复。启动此脚本前,需要确保大语言模型服务已经启动,并且正确配置了环境变量和模型路径。启动命令:
cd [项目上级文件夹]/server python reply-server.py
-
data-server.py
负责与移动端及目标网站进行数据通信。在启动此脚本前,同样需要确保所有依赖和环境配置正确。启动命令:
python data-server.py
3. 项目的配置文件介绍
项目使用 config_template.json
文件作为配置模板,需要用户提供个人账号信息后,将其重命名为 config.json
并进行配置。
配置文件通常包含以下内容:
- 个人账号信息:用于 API 认证和授权。
- 模型配置:包括模型路径、模型参数等。
- 服务端配置:如监听端口、数据库连接信息等。
在修改配置文件时,确保所有敏感信息(如账号密码)安全存放,不要上传分享。
配置文件示例(需替换为实际信息):
{
"account": {
"username": "your_username",
"password": "your_password"
},
"model": {
"path": "path_to_your_model",
"parameters": {
"n_gpus": 1,
"layers": 2000000
}
},
"server": {
"port": 5000,
"database": {
"host": "localhost",
"user": "db_user",
"password": "db_password",
"name": "db_name"
}
}
}
启动服务前,确保配置文件中的所有信息都是准确和最新的。
reply-ai 基于大型语言模型的评论回复机器人。 项目地址: https://gitcode.com/gh_mirrors/re/reply-ai