实时特征管道构建与部署指南
项目地址:https://gitcode.com/gh_mirrors/bu/build-and-deploy-real-time-feature-pipeline
项目介绍
本项目旨在指导开发者如何运用Python语言,结合Bytewax 🐝 和 Hopsworks Feature Store来设计并部署一个实时特征流水线。机器学习模型的性能直接受到输入特征的质量影响,特别是在如金融交易等场景中,特征需要即刻生成以确保预测的时效性和准确性。通过这个项目,你可以学会利用Rust语言的基础(经由Bytewax的高效Python API)和Python丰富的库生态系统来打造高性能且可扩展的实时处理系统。
项目快速启动
环境准备
首先,创建一个包含项目依赖的Python虚拟环境,并初始化项目:
make init
接着,设置Hopsworks API密钥和项目名,在set_environment_variables_template.sh
中配置,然后重命名文件并执行它。你需要在https://hopsworks.ai注册免费账户获取这些信息。
mv set_environment_variables_template.sh set_environment_variables.sh
./set_environment_variables.sh
运行本地流水线
要运行此实时特征流水线的本地版本,仅需执行:
make run
若想实时可视化数据,启动Streamlit仪表盘:
make frontend
部署至AWS EC2
对于EC2实例上的部署,确保你拥有AWS账号并安装了aws-cli工具,然后执行以下命令进行部署:
make deploy
应用案例和最佳实践
本项目提供了一个清晰的应用案例——从Coinbase WebSocket API抓取实时交易数据,即时转换成OHLC(开盘价、最高价、最低价、收盘价)数据作为特征,并存储于Hopsworks Feature Store中。这展示了如何在高吞吐量场景下处理数据流并保持低延迟,是实施实时数据分析和机器学习服务的理想示例。
最佳实践:
- 使用虚拟环境管理项目依赖。
- 配置环境变量以增强安全性,避免硬编码敏感信息。
- 在生产环境中利用容器化技术(如Docker)简化部署。
- 定期测试流水线以确保数据质量和处理速度。
典型生态项目
尽管该项目自身就是一个强大的生态组件,强调的是Bytewax与Hopsworks Feature Store的集成,但其也可融入更广泛的ML工作流程,比如结合Airflow进行作业调度,或者使用Kubernetes实现自动伸缩。此外,通过Streamlit或Grafana等可视化工具,可以加强数据洞察力和系统的监控能力。
在实际应用中,开发者可以探索将此实时特征流水线与其他MLOps工具,如GitLab CI/CD、Seldon Deploy或Prometheus监控系统相结合,来构建一个全面的、端到端的实时机器学习解决方案。
以上就是围绕https://github.com/Paulescu/build-and-deploy-real-time-feature-pipeline.git
项目构建的简明教程,希望对你的实时数据处理和机器学习项目有所帮助。