小红书数据抓取项目教程

小红书数据抓取项目教程

tiny-red-book 小红书数据抓取 项目地址: https://gitcode.com/gh_mirrors/ti/tiny-red-book

1. 项目的目录结构及介绍

tiny-red-book/
├── config/
│   ├── constants/
│   ├── db.js
│   └── ...
├── daos/
├── models/
├── schemas/
├── services/
├── spiders/
├── tasks/
├── .editorconfig
├── .eslintignore
├── .eslintrc.js
├── .gitignore
├── .npmrc
├── .prettierrc
├── LICENSE
├── index.js
├── package-lock.json
├── package.json
└── README.md

目录结构介绍

  • config/: 存放项目的配置文件,包括数据库配置、常量配置等。
    • constants/: 存放常量配置文件。
    • db.js: 数据库配置文件。
  • daos/: 数据访问对象目录,用于处理数据库操作。
  • models/: 数据模型目录,定义数据结构。
  • schemas/: 数据模式目录,定义数据验证规则。
  • services/: 服务层目录,处理业务逻辑。
  • spiders/: 爬虫目录,用于抓取数据。
  • tasks/: 任务目录,用于定义定时任务。
  • .editorconfig: 编辑器配置文件。
  • .eslintignore: ESLint 忽略文件配置。
  • .eslintrc.js: ESLint 配置文件。
  • .gitignore: Git 忽略文件配置。
  • .npmrc: npm 配置文件。
  • .prettierrc: Prettier 配置文件。
  • LICENSE: 项目许可证文件。
  • index.js: 项目启动文件。
  • package-lock.json: npm 锁定文件,确保依赖版本一致。
  • package.json: 项目依赖和脚本配置文件。
  • README.md: 项目说明文档。

2. 项目的启动文件介绍

index.js

index.js 是项目的启动文件,负责初始化项目并启动爬虫任务。以下是 index.js 的主要功能:

// index.js
const { start } = require('./spiders/homeFeed');

// 启动爬虫任务
start();

功能介绍

  • 导入爬虫模块: const { start } = require('./spiders/homeFeed');
  • 启动爬虫任务: start();

3. 项目的配置文件介绍

config/db.js

db.js 是数据库配置文件,定义了数据库的连接信息。以下是 db.js 的内容:

module.exports = {
  user: 'tinyredbook', // 数据库用户名
  pwd: 'xxxxxx',       // 数据库密码
  host: '127.0.0.1',   // 数据库主机地址,默认端口为27017
};

配置项介绍

  • user: 数据库用户名。
  • pwd: 数据库密码。
  • host: 数据库主机地址,默认端口为27017。

config/constants/

constants/ 目录下存放项目的常量配置文件,例如:

// config/constants/index.js
module.exports = {
  MAX_FEED_COUNT: 100, // 最大抓取的Feed数量
  // 其他常量配置
};

常量配置介绍

  • MAX_FEED_COUNT: 定义最大抓取的Feed数量。

通过以上配置文件,项目可以灵活地调整数据库连接信息和常量配置,以适应不同的运行环境和需求。

tiny-red-book 小红书数据抓取 项目地址: https://gitcode.com/gh_mirrors/ti/tiny-red-book

### 使用 VS Code 编写 Python 爬虫抓取小红书数据 #### 创建虚拟环境并安装依赖库 在使用 Visual Studio Code (VS Code) 开发爬虫项目之前,建议先创建一个独立的虚拟环境以隔离项目的依赖项。可以通过以下命令完成虚拟环境的设置[^5]: ```bash python -m venv pyVenvTest ``` 激活虚拟环境后,可以安装所需的依赖包 `scrapy` 和 `selenium` 来支持爬虫开发和动态页面解析功能[^1]。 对于分布式爬虫的需求,还可以引入 `scrapy-redis` 插件用于实现队列共享等功能[^2]。 #### 安装扩展插件优化体验 为了提升开发效率,在 VS Code 中推荐安装一些针对 Python 的扩展工具,比如 **Python Extension by Microsoft** 或者其他调试辅助类插件[^4]。这有助于语法高亮显示、错误提示以及代码自动补全等功能的支持。 #### 初始化 Scrapy 项目结构 通过运行下面这条指令初始化一个新的 Scrapy 工程目录树: ```bash scrapy startproject newcrawler ``` 此操作会生成标准布局下的文件夹体系,其中包含了 spiders 文件夹用来放置具体的爬取逻辑脚本。 #### 配置 Selenium 进行动态加载处理 当目标网站采用 AJAX 技术异步更新内容时,仅依靠传统的请求方式可能无法获取完整的 HTML 数据流。此时可借助于 Selenium WebDriver 实现浏览器模拟访问行为,并等待 JavaScript 执行完毕后再提取所需信息[^3]。 需要注意的是,实际部署过程中应考虑性能开销问题,合理平衡资源消耗与采集效果之间的关系。 以下是结合两者的一个简单例子演示如何利用 middleware 处理响应对象: ```python from scrapy import signals from selenium.webdriver.chrome.options import Options as ChromeOptions import time class SeleniumMiddleware(object): @classmethod def from_crawler(cls, crawler): s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): chrome_options = ChromeOptions() chrome_options.add_argument('--headless') driver_path = '/path/to/chromedriver' # 替换为本地 chromedriver 路径 self.driver.get(request.url) time.sleep(3) # 可调整延迟时间让 JS 加载完全 body = str.encode(self.driver.page_source) response_cls = HtmlResponse(url=self.driver.current_url, headers={'Content-Type': 'text/html'}, status=200, encoding='utf8', body=body) return response_cls # 返回新的 Response 对象给后续 pipeline 解析 def spider_opened(self, spider): pass # 如果需要可以在打开蜘蛛前做额外准备工作 ``` 以上片段定义了一个自定义下载中间件,它会在每次发出 HTTP 请求时启动无头模式下的 Chromium 浏览器实例去真实渲染网页源码再交给引擎进一步分析。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏庭彭Maxine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值