推荐:机器学习核心 - 极致边缘计算的硬件引擎

推荐:机器学习核心 - 极致边缘计算的硬件引擎

去发现同类优质开源项目:https://gitcode.com/

在这个数字时代,我们不断寻求更智能、更节能的技术解决方案。今天,我们为您呈现一款强大的开源项目——机器学习核心(Machine Learning Core,简称MLC),它是一个专为ST传感器产品中的极致实时边缘计算设计的硬件处理引擎。这个创新项目将引领您进入一个全新的计算领域。

1、项目介绍

MLC 是 STMicroelectronics 研发的一款高效能、低功耗的技术。该技术通过在传感器中内置机器学习处理能力,允许将部分算法从应用处理器转移到传感器内部,极大地降低了整体系统的功率消耗。尤其值得关注的是,那些以 "X" 结尾的 ST 传感器产品,均集成了这一先进功能。

2、项目技术分析

MLC 的核心技术是基于决策树逻辑的设计。这是一种数学工具,由一系列可配置的节点组成。每个节点都包含了基于阈值的“如果-则-否则”的条件判断。通过对传感器数据统计参数的输入信号进行评估,实现高效的机器学习运算。此外,其结果可以随时从应用处理器读取,并且能够为决策树结果的变化生成中断,确保实时响应。

3、项目及技术应用场景

MLC 非常适用于各种实时和低功耗敏感的应用场景,如:

  • 智能物联网设备:在节能模式下提供持续的环境监测。
  • 可穿戴设备:对用户的活动和健康指标进行实时分析,而无需频繁唤醒主处理器。
  • 自动驾驶:在汽车传感器中快速识别周围环境变化,提高安全性。

4、项目特点

  • 高效能耗:通过本地化处理降低整体系统功耗。
  • 实时性:使用中断机制确保快速响应变化。
  • 灵活配置:提供多种应用程序和配置示例,兼容不同的ST硬件和软件工具。
  • 易于集成:包括决策树生成脚本在内的工具集,简化了开发过程。

深入了解 MLC,您可以浏览ST官方网站上的MEMS传感器生态学为机器学习页面,获取更多资源和详细信息。

探索未来,现在就开始利用 Machine Learning Core 打造您的下一个智能应用吧!


更多信息:http://www.st.com
版权所有 © 2021 STMicroelectronics

去发现同类优质开源项目:https://gitcode.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏庭彭Maxine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值