Onagre:您的个性化桌面启动器,探索无限可能!

🚀 Onagre:您的个性化桌面启动器,探索无限可能!

在桌面环境中寻找一个既灵活又功能强大的应用程序启动器吗?不再徘徊不定,让 Onagre 带领您进入高效操作的新时代。无论是在 X 或 Wayland 环境下,Onagre 都能为您提供无与伦比的体验。

1. 项目简介

Onagre 是一款通用的应用程序启动器,以 Rofi/Wofi 和 Alfred 的启发为基点,并采用了 Iced 和 Pop-launcher 进行构建。它不仅适用于 X11 和 Wayland 系统,而且拥有高度可定制的主题和插件系统,这使得 Onagre 成为了一个真正意义上的“为自己打造”的工具。

2. 技术分析

架构基石:Pop-launcher

该项目基于 Pop-launcher 打造,这意味着 Onagre 继承了其出色的灵活性和插件系统,允许开发者和用户通过编写自己的插件或使用社区贡献的插件来扩展其功能,实现真正的个性化。

开发框架:Iced

采用 Iced 框架进行开发,使 Onagre 在视觉效果上更加出众,且提供了坚实的性能基础,保证了快速响应和流畅用户体验。

功能亮点

  • 全面兼容性:支持 X11 和 Wayland。
  • 主题自定义:用户可以根据个人喜好调整界面外观。
  • 丰富插件库:包括计算器、文件管理、终端控制等默认插件,也可通过 Pop-launcher 插件进一步扩展。

3. 应用场景和技术落地

职场效率提升

对于日常办公人员而言,Onagre 可以极大地提高工作效率,一键启动常用应用,简化文件搜索过程,减少鼠标点击次数,提高工作流的速度。

技术研发环境优化

技术人员可以通过配置特定的脚本和命令集,加速开发流程中的测试与部署环节。例如,利用终端插件快速执行代码编译或自动化任务。

创意工作者的理想伙伴

设计者和创意专业人士可以充分利用 Onagre 的文件管理和最近文档访问功能,迅速找到所需素材和参考资料,激发灵感并提高创作效率。

4. 项目特点

  • 跨平台适应性强:无论是传统桌面还是现代图形环境,Onagre 都能完美运行。
  • 高度可拓展性:得益于 Pop-launcher 插件系统的强大支撑,Onagre 具有无限的功能扩展潜力。
  • 用户友好度高:直观的 UI 设计与自定义选项,满足不同用户的个性化需求。
  • 维护活跃度:持续更新与完善的文档,积极回应社区反馈,确保软件质量与用户体验同步提升。

综上所述,Onagre 不仅仅是一个简单的桌面启动器,它是连接您与数字世界的一座桥梁,让您能够更自由地穿梭于各种应用之间,享受科技带来的便利与乐趣。立即加入我们,体验前所未有的个性化桌面生态!🚀🌟

在这里了解更多关于 Onagre 的精彩内容

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现驾驶员危险驾驶行为(吸烟、喝水、点头、打哈欠等)检测系统python源码+详细运行教 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏庭彭Maxine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值